A Regioselective and Stereospecific Synthesis of Allylsilanes from Secondary Allylic Alcohol Derivatives

Ian Fleming,* Dick Higgins, Nicholas J. Lawrence and Andrew P. Thomas
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

Primary and secondary allylic acetates and benzoates react with the dimethyl (phenyl) silyl-cuprate reagent to give allylsilanes, provided that the THF in which the cuprate is prepared is diluted with ether before addition of the allylic ester. The reaction is reasonably regioselective in some cases: (i) when the allylic system is more-substituted at one end than the other, as in the reactions $4 \rightarrow 5$ and $9 \rightarrow 10$; (ii) when the steric hindrance at one end is neopentyl-like, as in the reactions $15 \rightarrow 16$; and (iii) when the disubstituted double bond has the Z configuration, as in the reactions $Z-19 \rightarrow$ $E-21$ or, better, because the silyl group is becoming attached to the less-sterically hindered end of the allylic system, $Z-20 \rightarrow E-22$. The regioselectivity is better if a phenyl carbamate is used in place of the ester, and a three-step protocol assembling the mixed cuprate on the leaving group is used, as in the reactions $23 \rightarrow 24$ and E - or $Z-29 \rightarrow E-21$, or, best of all, because the silyl group is again becoming attached to the less-sterically hindered end of the allylic system, E - or $Z-30 \rightarrow E-22$. This sequence works well to move the silyl group onto the more substituted end of an allyl system, but only when the move is from a secondary allylic carbamate to a tertiary allylsilane, as in the reaction $38 \rightarrow 39$. Allyl(trimethyl)silanes can be made using alkyl-or aryl-cuprates on trimethylsilyl-containing allylic esters and carbamates, as in the reactions $40 \rightarrow 41$, and $43 \rightarrow 44$. The reaction of the silylcuprate with allylic esters and the three-step sequence with the allylic carbamates are stereochemically complementary, the former being stereospecifically anti and the latter stereospecifically syn. Homochiral allylsilanes can be made by these methods with high levels of stereospecificity, as shown by the synthesis of the allyIsilanes 54,58 and 59.

Abstract

Allylsilanes undergo electrophilic substitution reactions regiospecifically in the $S_{\mathrm{E}} 2^{\prime}$ sense, ${ }^{1}$ and stereospecifically in an anti sense, as shown, principally, by the work of Wetter, ${ }^{2}$ Eschenmoser, ${ }^{3}$ Kumada, ${ }^{4}$ Kitching ${ }^{5}$ and ourselves. ${ }^{6}$ To take full advantage of the highly stereospecific and regiospecific reactions of allylsilanes, and anticipating a need to test whether the osmylation, epoxidation, Simmons-Smith reaction, ${ }^{7}$ hydroboration ${ }^{8}$ and protodesilylation ${ }^{9}$ of allylsilanes, reported in the three preceding papers to this one, might be similarly well controlled, we sought new ways of making allylsilanes. There are, of course, many ways of making allylsilanes, ${ }^{10}$ but it was imperative that the new routes should be both regiocontrolled and stereocontrolled, for which there were no general methods. In this paper and that following, we describe two such routes, the first using allylic alcohols as substrates, and the second using diastereoselective aldol reactions followed by stereospecific decarboxylative eliminations. ${ }^{11}$ We have reported some of the present work using allylic alcohol derivatives in two preliminary communications. ${ }^{12}$ We had already established ${ }^{13}$ a simple synthesis of allylsilanes from the reaction of tertiary allylic acetates with our silyl-cuprate reagent. This synthesis was stereospecifically anti, ${ }^{6}$ and completely regioselective, giving the allylsilane with the silyl group at the less-substituted end of the allyl fragment. However, we, and Kitching, ${ }^{14}$ had found that the silyl-cuprate reagent failed to react with secondary allylic acetates, limiting this synthesis to those allylsilanes that are disubstituted at $\mathrm{C}-3$, which we already knew were apt to be unreliable in their electrophilic reactions, both stereochemically ${ }^{15}$ and with respect to their undergoing clean $S_{\mathrm{E}} 2^{\prime}$ reactions. ${ }^{16}$ Both problems stem from the ease with which an electrophile can attack at $\mathrm{C}-2$ in competition with the normal preference for attack at C-3, a problem that does not arise with allylsilanes monosubstituted at $\mathrm{C}-3$. Trost has found that this type of allylsilane can be prepared from secondary allylic acetates using tristrimethylsilylaluminium and transition metal catalysts, ${ }^{17}$

and Kitching ${ }^{14}$ and Smith ${ }^{18}$ have found that silyl-lithium and silyl-cuprate reagents react with primary and secondary allyl chlorides. All three methods achieve some, but not complete regiocontrol.

Results and Discussion

Taking our lead from reports that a less polar solvent was better for cuprate reactions, ${ }^{19}$ we added ether or a mixture of ether and pentane to the silyl-cuprate reagent, which we find can only be prepared in THF. In this solvent mixture, the primary and secondary allylic acetates or benzoates $1,4,6,7,9,11$ and 13 gave the corresponding allylsilanes $2,3,5,8,10,12$ and 14 (Scheme 1). These reactions, together with our earlier results, ${ }^{14}$ encompass nearly the full range, with a primary, secondary or tertiary centre carrying the leaving group, a primary, secondary or tertiary centre at the other end of the double bond and a secondary or tertiary centre at the central carbon atom. The only combinations that we have not tried are those with a primary carbon at both ends and a tertiary carbon at both ends.

1. Regioselectivity with Unsymmetrical Acetates.-Of the reactions of the allylic esters in Scheme 1 having any regiochemistry, the allylic esters $1,4,6$ and 9 regioselectively gave very largely or only the corresponding allylsilanes with the silyl group at the less-substituted end of the allylic fragment. The secondary allylic acetate 6 gave a $50: 50$ mixture of the E-and Z-crotylsilanes $2 \mathbf{2 a}$, while the stereochemistry of the double bond in the E-crotyl acetate E-1a was retained in the formation of the E-crotylsilane 2 . Only the Z-crotyl benzoate Z - 1 b gave a substantial amount (10% of the mixture) of the allylsilane 3 with the silyl group at the more-substituted end. There was no marked difference between the acetates and benzoates, when we used both, but in one case (see below), we obtained a higher yield from a benzoate.

$$
\begin{aligned}
13 \text { a } R & =H, n=1 \\
b R & =H, n=2 \\
\text { c } R & =M e, n=
\end{aligned}
$$

$$
\text { b } R=H, n=2 \quad 81 \%
$$

$$
c R=M e, n=2 \quad 84 \%
$$

15 a $R=M e, n=1$
b $R=P h, n=1$
c $R=P l^{\prime}, n=1$
d $\mathrm{R}=\mathrm{Me}, \boldsymbol{n}=2$

- $R=P h, n=2$
$f R=P \mathcal{P}^{j}, n=2$

16 a R = Me, $n=173 \%$
b $R=P h, n=181 \%$
c R = Pr, $n=169 \%$
d $R=M e, n=251 \%$
e $R=P h, n=281 \%$
$f R=P \mathbf{i}, n=263 \%$

18

Scheme 2 Reagent: $\mathrm{i},\left(\mathrm{PhMe}_{2} \mathrm{Si}_{2} \mathbf{C u C N L i}_{2}, \mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}\right.$-pentane
neopentyl position. We had thought that the clean regiochemistry in these cases might have been the result of a combination of the steric hindrance at the carbon atom in the ring and an energetically favourable change from an exocyclic double bond in the starting material 15 to an endocyclic double bond in the product 16. However, the cyclic allylic acetate 17, which is not significantly more hindered at one end than the other, gave largely the allylsilane 18 with an exocyclic double bond, implying that there is some preference for direct displacement of the acetoxy group, in contrast to Smith's result ${ }^{18}$ with her trimethylsilyl-copper reagent and allylic chlorides. This is borne out by the results with the unsymmetrical E-allylic acetates $E-19$ and 20, which are also not significantly different sterically at each end. The E-allylic acetates gave, as the major products (Table 1), the allylsilanes from direct substitution of the acetoxy group in three of the four cases. In contrast, the Z allylic acetates $\boldsymbol{Z - 1 9}$ and $\mathbf{2 0}$ gave largely, in all four cases, the E-products of allylic displacement. In these cases, evidently, the move of the double bond from a cis configuration in the starting material to a trans configuration in the product is energetically favourable enough to influence the regiochemistry. When the move of the double bond coincides with the arrival of the silyl group at the less hindered end of the allylic fragment, as in the conversions of $Z-20 \mathrm{a}$ and $Z-20 \mathrm{~b}$ into $E-22 \mathrm{a}$ and $E-22 \mathrm{~b}$, respectively, the reaction is regiochemically clean enough to be useful.
However, the most striking feature of the results in Table 1 is that the ratios of the four regioisomeric products are considerably different with each starting material, in contrast to the corresponding reactions of lithium dimethylcuprate with the acetates $E-19$ a and $E-20$ a, both of which are known to give largely (E)-3-methyl-1-phenylbut-1-ene, with only the smallest differences from one starting material to the other. ${ }^{20}$ Goering did not report the reaction of lithium dimethylcuprate with the

Table 2 Regioselectivity in the formation of the allylsilanes 21 and 22 from the unsymmetrical allylic urethanes 29 and 30

Starting material	R	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	Proportions of the products ${ }^{\text {a }}$			
			E-21	Z-21	E-22	Z-22
E-29a	Ph	68	39	8	52	
Z-29a	Ph	75	100			
Z-30a	Ph	68			100	
E-29b	Pri	86	67	9	23	
E-30b	$\mathrm{Pr}^{\mathbf{i}}$	87			100	
Z-296	$\mathrm{Pr}^{\mathbf{i}}$	64	100			
Z-30b	Pri	87			100	
E-29C	Me	75	82	18	-	-
Z-29c	Me	82	98	2	-	-

${ }^{a}$ Estimated from distinctive signals in ${ }^{1} \mathbf{H}$ NMR spectra.
Z-acetates Z-19a and Z-20a, but we find that they also give largely (E)-3-methyl-1-phenylbut-1-ene. Such tiny differences in product distribution as are discernible in Goering's work with alkyl cuprates match ours with the silyl cuprate: there is a trend towards direct displacement in the E-isomers ${ }^{20.21}$ and towards allylic shift in the Z-isomers. ${ }^{22}$ Clearly, the intermediate allyl cuprates, thought to be involved in this type of reaction, are not completely equilibrated in our reaction, as they evidently are, almost completely, with alkyl cuprates. This reflects the greater rate of the reductive elimination step when one of the ligands on the copper(III) intermediate is a silyl group and a silicon-carbon bond is being forced. That a relatively electropositive element should undergo faster reductive elimination is consistent with our observations ${ }^{23}$ that mixed alkyl-silyl cuprates selectively transfer the silyl group rather than the alkyl group in all their reactions, and that a mixed stannyl-alkyl cuprate and a mixed silyl-stannyl cuprate selectively transfer the stannyl group, in all of which reactions a reductive elimination step can be presumed to occur. It is also clear that the intermediates in our work are σ-allyl species, retaining the distinction between the two ends of the allylic fragment found in the starting materials, and not π-allyl species, where this distinction is necessarily lost. This matches the observation with alkyl cuprates that a better leaving group than acetate leads to a greater degree of direct displacement. ${ }^{21}$ In line with this, we find that the mesylate corresponding to the acetate $E-19$ a gave a slightly higher proportion of the allylsilane $E-22 \mathrm{a}$ than the acetate did. Although the improvement in the yield was considerable, the improvement in regioselectivity was marginal. In any case, this cannot be a general solution to the regiocontrol problem, because all attempts to make the mesylate corresponding to $E-20 \mathrm{a}$ gave the mesylate corresponding to $E-19$ a.

The reactions in the a series $\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ gave the allylsilanes 21a and 22a (Scheme 2) in rather low yields. Later, when studying the corresponding reactions in the b series $\left(\mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}\right)$, we discovered that the addition of triphenylphosphine, which is known to stabilise cuprates, ${ }^{24}$ improved the yields. These reactions are somewhat capricious, as cuprate reactions frequently are, and adding phosphine or pentane did not always make much difference. Most of the reactions in Scheme 1, for example, took place in good yield without any need for added phosphine. It is probably good advice to suggest that one should try the reaction first without either pentane or phosphine, and bear in mind that either or both may help if the yield proves to be low. The ether, however, is essential. Insofar as we have duplicated runs with and without triphenylphosphine and with tributylphosphine in place of triphenylphosphine, we find little difference in the regioselectivities in Table 1. We also found little difference in regioselectivity or yield with various added Lewis acids. The reaction with $Z-19 b$ was
notably low-yielding (55%) with attack at the acetyl group accounting for most of the loss. It was in this case that we discovered that the corresponding benzoate gave a better yield (90%) with little effect on the distribution of regioisomers.

2. Regioselectivity using a Three-step Sequence on Carbam-

 ates.-Although useful levels of regiocontrol can be achieved using the Z-allylic acetates, we were not satisfied, and turned to the possibility that the corresponding carbamates might be better. Carbamates allow a cuprate reagent to be assembled on the leaving group, in consequence of which the cuprate is delivered intramolecularly largely to the allylic position. We applied the sequence introduced by Galina and Ciattini ${ }^{25}$ for alkyl cuprates, and refined by Goering, ${ }^{26}$ to our silyl cuprates. The results for the allylic systems that are secondary at both ends (Scheme 3 and Table 2), show that the regiocontrol

Scheme 3 Reagents: i, BuLi, THF; ii, CuI; iii, $\mathrm{PhMe}_{2} \mathrm{Li}$
problem is largely solved, although the yields are sometimes low, with much starting material recovered in such cases. The yields shown in parentheses in Scheme 3 are those based on starting material consumed. The allylic carbamates $\mathbf{2 3}$ and $\mathbf{2 5}$ with exocyclic double bonds consistently gave the allylsilanes 24 and 26 with endocyclic double bonds; but the carbamate 27 with an endocyclic double bond gave a mixture of the regioisomeric allylsilanes 26 and 28, with the latter an equal mixture of E - and Z-isomers, and the carbamate E-29a gave virtually no regioselectivity. We did not succeed in preparing the carbamate E-30a, because the corresponding alcohol reacted with phenyl isocyanate to give the rearranged carbamate $E-29$ a. Otherwise the reactions are fairly well-
behaved regiochemically. The two substrates that have no regiochemistry 29c show that the Z-allylic system more strongly favours the formation of the E-product. This is easily understandable: the two reasonable conformations 31 and 32 for reaction from the Z-isomer are very different in energy, because of the $\mathrm{A}^{1,3}$ strain in 32, but the two conformations $\mathbf{3 3}$ and 34 of the E-isomer are closer in energy. This analysis

supports the generally accepted picture of internal delivery of the cuprate, with predominant allylic inversion.

The same sequence of steps also works to some extent with allylic systems having unsymmetrical levels of substitution on the allylic fragment (Scheme 4), overpowering the tendency for

Scheme 4 Reagents: i, BuLi, THF; ii, CuI; iii, $\mathrm{PhMe}_{2} \mathrm{SiLi}$
these systems simply to give the product with the silyl group at the less-substituted end of the allylic fragment, as in our earlier work ${ }^{13}$ and in those examples in Scheme 1 that have any regiochemistry. The major products from the carbamates $E-35,36$ and 38 are the allylsilanes 3,37 and 39 , respectively, with the silyl group at the more-substituted end, but the selectivity is only synthetically useful in the last of these. Surprisingly, the Z-crotyl carbamate $Z-35$ is less selective than the E-isomer $E-35$ in placing the silyl group at the more-substituted end of the allylic fragment, with the major product in this case Z-2 being that of direct displacement. Because we have already developed a method for the synthesis of the allylsilanes 3 and $37,{ }^{27}$ our failure to make them cleanly in this work is less
important than it might be. That method, however, was only developed for the synthesis of allylsilanes having a terminal methylene group, and is not available for the synthesis of allylsilanes like 39 , for which the present method is uniquely effective.

In all the work described above, we used the dimethyl(phenyl)silyl group as the nucleophile, in the form of its readily available cuprate. Some of this chemistry will, no doubt, work for its trimethylsilyl counterpart, but the trimethylsilyllithium reagent can only be prepared easily in HMPA, and its derived cuprate therefore is dissolved in a relatively polar solvent. Since the key feature of our success with the allylic acetates is in having a less polar solvent, it will not be surprising that some at least of the work described here will not work for the synthesis of allyl(trimethyl)silanes. One solution to this problem, which has some precedent, ${ }^{28}$ and which we have already applied to the synthesis of allenyl(trimethyl)silanes, ${ }^{29}$ is to incorporate the trimethylsilyl group into the allylic substrate, and use an alkyl or aryl cuprate as the nucleophile. We have tested the feasibility of this approach to a limited extent (Scheme 5 and Table 3). The

Scheme 5 Reagents: i, BuLi or MeLi, THF; ii, CuI; iii, MeLi; iv, PhLi; $\mathrm{v}, \mathrm{MeCuCN} \mathrm{Li}, \mathrm{Et}_{2} \mathrm{O}$; vi, $\mathrm{Me}_{2} \mathrm{CuLi}$
carbamate technique works well with the Z-carbamates Z-40a and 43 , giving cleanly the allylsilanes $E-41$ and 44 , respectively. with the E-carbamate $E-40 a$ only a little worse than $Z-40 a$, in giving some of the Z-allylsilane $Z-41 a$. The Z-benzoate $Z-40 b$ was little worse than Z - 40 a, in giving some of the Z-allylsilane $Z-41 a$. The Z-benzoate $Z-40 b$ was also clean in giving allylic displacement, but only with the heterocuprate derived from one equivalent of methyllithium and one of copper(I) cyanide, a cuprate known to be more selective for allylic displacement. ${ }^{30}$ The E-benzoate $E-40 b$ gave a mixture of products with this cuprate, but was comparatively clean in giving the vinylsilane $E-42$ with the standard lithium dimethylcuprate.
3. Stereochemistry.-We had every expectation that the reactions described above would be well-controlled stereochemically. We already knew that tertiary allylic acetates reacted with our silyl-cuprate reagent stereospecifically anti, ${ }^{6}$ and it was also known that the carbamate sequence was stereospecifically syn with alkyl and aryl cuprates. ${ }^{26}$ We confirmed that there were no surprises in store by carrying out the reactions in Scheme 6. The secondary allylic benzoates 45 and 48 cleanly gave the known ${ }^{14}$ allylsilanes 47 and 50 , respectively, by anti displacement, and the diastereoisomeric carbamates 46 and 49 gave the same allylsilanes 47 and 50 , respectively, by syn displacement. These racemic compounds, of course, do not reveal the regiochemistry of the reaction, which is probably only

Table 3 Regioselectivity in the formation of the allylsilanes 41 and 42 from the unsymmetrical allylic urethanes and benzoates 40

Starting material	X	Cuprate	R	Yield (\%)	Proportions of the products ${ }^{\text {a }}$			
					E-41	Z-41	E-42	Z-42
E-40a	CONHPh	b	Me	40	90	10		
Z-40a	CONHPh	b	Me	74	100			
E-40a	CONHPh	c	Ph	59	93	7		
Z-40a	CONHPh	c	Ph	87	100			
E-40b	COPh	$\mathrm{Me}_{2} \mathrm{CuLi}$	Me	44	6		91	3
Z-40b	COPh	$\mathrm{Me}_{2} \mathrm{CuLi}$	Me	69	59		4	38
E-40b	COPh	MeCuCN Li	Me	52	55	30	15	
Z-40b	COPh	MeCuCN Li	Me	55	98		1	1

${ }^{a}$ Estimated from distinctive signals in ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{b}$ Three-step sequence using MeLi, see Scheme $5 .{ }^{c}$ Three-step sequence using PhLi , see Scheme 5 .

Scheme 6 Reagents: \mathbf{i} ($\mathrm{PhMe}_{2} \mathrm{Si}_{2} \mathrm{CuCN} \mathrm{Li}_{2} ;$ ii, BuLi, THF; iii, CuI; iv, $\mathrm{PhMe}_{2} \mathbf{S i L i}$
clean for the carbamates, but they do reveal the complementary nature of the two processes that make it possible to synthesise either allylsilane from the same allylic alcohol. The tertiary allylic carbamate 51 also gave the known ${ }^{6}$ allylsilane 52 from syn displacement.

With the methods in hand, we now ventured to make our first homochiral allylsilanes, deliberately choosing another example that would reveal the complementarity of the two allylsilane syntheses. The propargyl alcohol 56, readily available in 78% e.e. by reduction of the corresponding ketone with Alpine-borane, ${ }^{(41.32}$ gave the carbamate 53 , which cleanly gave the allylsilane 54. We proved the sense of chirality and degree of optical purity in this compound by reducing the double bond, and converting the dimethyl(phenyl)silyl group into a hydroxy group with retention of configuration. ${ }^{33}$ The known ${ }^{34}$ (-)alcohol 55 was produced in 72% e.e., as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy of its Mosher's ester, ${ }^{35}$ only a little less than that of the starting material. The same propargyl alcohol 56 gave the benzoate 57 , which gave a mixture of the E - and Z-allylsilanes 58 and 59, in a ratio similar to that from the racemic acetates (Table 1). We did not separate this mixture, but converted it directly into the mixture of enantiomeric alcohols 60 and 55, which were present in a ratio of $76: 24$ (52% e.e.). Allowing for the silicon-substituted centres in the E - and Z-allylsilanes 58 and

Scheme 7 Reagents: $\mathrm{i}, \mathrm{PhNCO}, \mathrm{Et}_{3} \mathrm{~N} ; \mathrm{ii}, \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$, quinoline; iii, BuLi, THF; iv, CuI; v, $\mathrm{PhMe}_{2} \mathrm{SiLi}^{2}$, vi, $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$; vii, $\mathrm{BF}_{3} \cdot 2 \mathrm{AcOH} ;$ viii, MCPBA, $\mathrm{Et}_{3} \mathrm{~N}$; $\mathbf{i x},(\mathrm{PhCO})_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP} ; \mathbf{x},\left(\mathrm{PhMe}_{2} \mathrm{Si}_{2}\right)_{2} \mathrm{CuCN} \mathrm{Li}_{2}$

59 having opposite absolute configurations, this level of optical purity is again very close (96%) to that expected for a completely stereospecific reaction. Thus, all the conversions in Scheme 7 are almost certainly, within experimental error, highly stereospecific.

At first sight, the formation of the mixture of allylsilanes 58 and 59 does not look helpful, but these allylsilanes, differing from each other in two stereochemical features, the stereogenic centre and the double bond geometry, will react with electrophiles to give the same enantiometer of the product of an $S_{\mathrm{E}} 2^{\prime}$ reaction. Thus, either enantiomer of an $S_{\mathrm{E}} 2^{\prime}$ product can, in principle, be made from a single propargyl alcohol. Alternatively, convergence is possible-one enantiomer (or diastereoisomer) of a propargyl alcohol can be converted into either enantiomer (or diastereoisomer) of the corresponding allylsilane, and the other enantiomer (or diastereoisomer) of the propargyl alcohol can then be converted into the same allylsilane. When we used convergence to control the configuration of an allylsilane in our Prelog-Djerassi lactone synthesis, ${ }^{36}$ we achieved convergence using a different method-control of the double bond geometry of the allylic acetate. This had the disadvantage that we needed to use a reduction of the triple bond with lithium aluminium hydride in order to make the E allylic acetate. The new method, using the different Z-allylic alcohol derivatives, avoids the need for this effectively undiscriminating reagent.
4. Preparation of the Starting Materials.-Almost all of the starting materials used in this work were prepared uneventfully by standard methods. The acetates and benzoates were prepared from the corresponding alcohols using acetic anhydride
or chloride or benzoic anhydride, triethylamine and N, N dimethylaminopyridine (DMAP) ${ }^{37}$ in the usual way. Likewise, the carbamates were prepared from the alcohols using phenyl isocyanate and triethylamine. The open-chain E-allylic alcohols were prepared by the reaction of a lithium or Grignard reagent on the α, β-unsaturated aldehyde. The open-chain Z-allylic acetates, benzoates or carbamates were prepared by hydrogenation of the corresponding propargylic derivatives, themselves prepared from the alcohols obtained by treating the saturated aldehydes with lithium acetylides. ${ }^{38}$ The alcohol precursors to the cyclic allylic acetates and carbamates, and to the open-chain acetates 11a and 11b, were prepared by Luche reduction ${ }^{39}$ of the α, β-unsaturated ketones, which were, in turn, prepared, when the double bond was exocyclic, by base-catalysed condensation of the cyclic ketone with the appropriate aldehyde.

Only the following points are worthy of note. In the preparation of the precursors to the carbamates $23 a-\mathrm{c}, 3,3$-dimethylcyclopentanone was rather unselective regiochemically in its reaction with base, in contrast to Posner's experience with a closely similar compound, ${ }^{40}$ and the mixtures of enones eventually derived from the mixture of enolates had to be separated by extensive chromatography. We prepared 2,2dimethylcyclohexanone, the precursor to the acetate 15d, by phenylthiomethylation-desulfurisation. ${ }^{41}$ Because this route gave us some trouble in the Raney nickel step, we used a slightly different order of events, illustrated in Scheme 8, in order to

Scheme 8 Reagents: i, LDA; ii, RCHO; iii, $\mathrm{MeSO}_{2} \mathrm{Cl}_{1} \mathrm{Et}_{3} \mathrm{~N}$; iv, DBU; v, KOBu', MeI; vi, MeI; vii, Pr'CHO
prepare the precursors $62 a$ and $62 b$ of the acetates $15 e$ and $15 f$. A similar sequence also served for the preparation of the precursor 64 of the acetate 11 b . The same problem did not arise with 2,2-dimethylcyclopentanone, which we prepared by hydrogenation of 5,5-dimethylcyclopent-2-enone. ${ }^{42}$ The β hydroxy ketones, in general, were better dehydrated by treatment with methanesulfonyl chloride followed by base, which gave only the E-isomers, than by treatment with acid ${ }^{43}$ which gave E - and Z-mixtures and some equilibration of the double bond into the ring. ${ }^{44}$ The alcohol precursor to the cisbenzoate 48 was even more the major product (98:2) from reduction of the corresponding ketone when the reaction with lithium aluminium hydride was carried out at $-78{ }^{\circ} \mathrm{C}$ instead of at $0^{\circ} \mathrm{C} .{ }^{45}$ The trans-benzoate 45 was the major, but not quite the exclusive product, from Mitsunobu reaction ${ }^{46}$ with the diastereoisomeric cis-alcohol and benzoic acid.

Experimental

General Method for the Synthesis of Allylsilanes from Allylic Acetates and Benzoates.-Typically, dimethyl(phenyl)silyllithium ${ }^{47}\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in $\left.\mathrm{THF} ; 6.0 \mathrm{~cm}^{3}\right)$ was added to a stirred slurry of copper(I) cyanide (3.0 mmol) and triphenylphosphine (6.0 mmol) in ether $\left(15 \mathrm{~cm}^{3}\right)$ or a mixture of ether and pentane $\left(15 \mathrm{~cm}^{3}, 1: 1\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. After 20 min , the allylic acetate or benzoate $(2.0-3.0 \mathrm{mmol})$ in ether ($5 \mathrm{~cm}^{3}$) or a mixture of ether and pentane $\left(5 \mathrm{~cm}^{3}, 1: 1\right)$ was added
dropwise over 5 min . The mixture was stirred at $0^{\circ} \mathrm{C}$ for a further 2-4 h, quenched with aqueous ammonium chloride and extracted with ether. The ether layer was washed with aqueous sodium hydrogen carbonate and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue was chromatographed (hexane) to remove the fast-running silicon-containing by-products and/or distilled to give the allylsilane. The following allylsilanes were made by this method.
(E)-1-Dimethyl(phenyl) silylbut-2-ene ${ }^{48} \mathrm{E}-2$ (74% from E-1a) (74\% as a 95:5 mixture with 3 from E-1b) (70\% as a 50:50 mixture with Z-2 from 6). R_{f} (hexane) 0.46 ; $v_{\max }\left(\right.$ film) $/ \mathrm{cm}^{-1}$ 1247 (SiMe), 1113 (SiPh) and 964 (trans $-\mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.54-7.33 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.40-5.25$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 1.66-1.61 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ and Me) and $0.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{S} 8 \mathrm{Me}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 139.1, 133.6, 128.7, 127.7, 126.4, 124.0, 21.7, 17.9 and $-3.3 ; m / z$ $190\left(2 \%, \mathrm{M}^{+}\right), 135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and $55\left(20, \mathrm{M}-\mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: $\mathrm{M}^{+}, 190.1175 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$ requires $M, 190.1178$).
(Z)-1-Dimethyl(phenyl) silylbut-2-ene Z-2 (81\% of a 74:10:16 mixture with $\mathrm{E}-2$ and $\mathrm{E}-3$ from an $86: 14$ mixture of $\mathrm{Z}-1 \mathrm{~b}$ and $\mathrm{E}-$ 1b). R_{f} (hexane) 0.46; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1241$ (SiMe), 1111 (SiPh) and $1011(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.7-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.7-5.2(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 1.77\left(2 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{2} \mathrm{Si}\right), 1.56(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{MeC}=\mathrm{C})$ and $0.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 134.0,133.8,128.9,127.8$, $125.8,122.1,17.1,12.5$ and $-3.3 ; m / z 190\left(2 \%, \mathrm{M}^{+}\right)$and 135 ($100, \mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 190.1174 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Si}$ requires M, 190.1178).

1-Dimethyl(phenyl) silyl-3-methylbut-2-ene ${ }^{49} 5$ (83% from 4). R_{f} (hexane) 0.43 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1258$ (SiMe) and 1128 (Si$\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.7-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.17(1 \mathrm{H}, \mathrm{t}$ quintet, $J 8.2$ and $1.2, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}$), $1.69\left(3 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.65$ $\left(2 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{CH}_{2} \mathrm{Si}\right), 1.51\left(3 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{Me}_{\mathrm{A}} M e_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right)$ and 0.27 ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$); m/z $204\left(14 \%, \mathrm{M}^{+}\right.$) and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: \mathbf{M}^{+}, 204.1331. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{Si}$ requires M, 204.1334) identical (${ }^{1} \mathrm{H}$ NMR) with an authentic sample prepared from 2-methylbut-3-en-2-yl acetate by the method of Marchi. ${ }^{13}$
(E)-2-Dimethyl(phenyl)silyl-3-ene E-8 (78\% from E-7) (67\% of an 88:12 mixture with Z-8 from Z-7). R_{f} (hexane) 0.45 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1251$ (SiMe), 1116 (SiPh) and 975 (trans$\mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.52-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.43(1 \mathrm{H}, \mathrm{ddq}, J$ $15.3,7.0$ and $1.4, \mathrm{MeCH}=\mathrm{CH}), 5.23(1 \mathrm{H}, \mathrm{ddq}, J 15.3,1.2$ and $6.2,1.2, \mathrm{MeCH}=\mathrm{CH}), 1.75(1 \mathrm{H}$, quintet of quintets, $J 7.5$ and 1.2 , $\mathrm{SiCH}), 1.65(3 \mathrm{H}, \mathrm{dt}, J 6.2$ and $1.4, M e \mathrm{CH}=\mathrm{CH}), 1.02(3 \mathrm{H}, \mathrm{d}, J$ $7.4, \mathrm{SiCHMe}$) and $0.24\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 138.2,134.0$, $133.6,128.8,127.6,121.4,25.7,17.9,14.1,-4.7$ and $-5.3 ; m / z$ $204\left(3 \%, \mathbf{M}^{+}\right)$and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 204.1320$. $\mathrm{C}_{13} \mathrm{H}_{20}$ Si requires $M, 204.1334$).

2-Dimethyl(phenyl) silyl-4-methylpent-3-ene ${ }^{50} 10$ (77% from 9a) $\left(55 \%\right.$ from 9b). R_{f} (hexane) $0.44 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1260$ (SiMe), $1117(\mathrm{SiPh})$ and $999(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 4.95\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 10.8$ and $\left.1.4, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right), 1.95(1 \mathrm{H}$, $\mathrm{dq}, J 10.8$ and $7.1, \mathrm{MeCHSi}), 1.68\left(3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $1.44\left(3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{SiCH} M e), 0.26$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $138.3,134.0,128.2,127.5,127.4,25.9,21.9,18.1,15.4,-4.6$ and $-5.5 ; m / z 218\left(3 \%, \mathrm{M}^{+}\right), 135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and $105(7, \mathrm{PhSi})$ (Found: $\mathrm{M}^{+}, 218.1499 . \mathrm{C}_{14} \mathrm{H}_{22}$ Si requires $M, 218.1491$).
(E)-4-Dimethyl(phenyl)silyl-3-methylpent-2-ene 12a $(92 \%) . R_{f}$ (hexane) $0.47 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1252$ (SiMe) and 1115 (SiPh); $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.51-7.31(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.01(1 \mathrm{H}$, br $\mathrm{q}, J 6.5$, $\mathrm{C}=\mathrm{CH}), 1.75(1 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SiCH}), 1.56(3 \mathrm{H}, \mathrm{d}, J 6.5,=\mathrm{CH} M e)$, 1.46 ($3 \mathrm{H}, \mathrm{t}, J 1.0, \mathrm{CMe}$) 1.06 ($3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{SiCHMe}$), $0.30(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 138.9$, $138.4,133.9,128.7,127.5,116.0,31.8,17.0,14.4,13.4,-3.9$ and $-4.7 ; m / z 218\left(5 \%, \mathbf{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: \mathbf{M}^{+}, 218.1483. $\mathrm{C}_{14} \mathrm{H}_{22}$ Si requires $M, 218.1491$).
(E)-5-Dimethyl(phenyl)silyl-2,4,6-trimethylhept-3-ene 12b $(68 \%) . \quad R_{\mathrm{f}}$ (hexane) $0.45 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 1630 \quad(\mathrm{C}=\mathrm{C}) ; \quad \delta$ $\left(\mathrm{CDCl}_{3}\right) 7.53-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.82(1 \mathrm{H}, \mathrm{dq}, J 9$ and $1, \mathrm{HC}=\mathrm{C})$,
$2.44\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 9$ and $7, \mathrm{Me}_{2} \mathrm{CHC}=\mathrm{C}$), 1.88 (1 H , d septet, J 8 and $\left.7, \mathrm{Me}_{2} \mathrm{CHCHSi}\right), 1.46(3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{MeC}=\mathrm{C}), 1.34(1 \mathrm{H}, \mathrm{d}$, J 8, CHSi), 0.91 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe} \mathrm{A}_{\mathrm{B}}$), 0.84 ($3 \mathrm{H}, \mathrm{d}, J 7$, CHMe $_{\text {A }} M e_{\text {B }}$), $0.82\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and 0.22 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{\mathbf{A}} M e_{\mathrm{B}}\right) ; m / z 274\left(22 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: $\mathrm{M}^{+}, 274.2130 . \mathrm{C}_{18} \mathrm{H}_{30}$ Si requires $M, 274.2117$).

3-Dimethyl(phenyl)silylcyclopentene 14a (77\%). R_{r} (hexane) $0.37 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1240(\mathrm{SiMe})$ and $1105(\mathrm{SiPh}) ; \delta_{\mathbf{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.54-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 2.30-$ $1.80\left(5 \mathrm{H}, \mathrm{m}\right.$, ring H), $0.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{Me}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.25(3 \mathrm{H}$, s, $\left.\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 138.7,133.7,132.0,128.9,128.5$, $127.7,34.1,33.0,25.3,-4.57$ and $-4.60 ; \mathrm{m} / \mathrm{z} 202\left(2 \%, \mathrm{M}^{+}\right)$and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 202.1175 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{Si}$ requires M, 202.1178).

3-Dimethyl(phenyl)silylcyclohexene 14b (81\%). $\boldsymbol{R}_{\mathrm{f}}$ (hexane) $0.40 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}), 1245$ (SiMe) and 1105 $(\mathrm{SiPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.55-7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.65(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 1.97-1.45(7 \mathrm{H}, \mathrm{m}$, ring H$), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{A}} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 138.3,134.0,128.9$, $127.7,126.0,127.6,25.7,25.1,23.9,22.6,-4.6$ and $-4.7 ; m / z 216$ $\left(5 \%, \mathrm{M}^{+}\right)$and 135 ($100, \mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 216.1340$. $\mathrm{C}_{14} \mathrm{H}_{20}$ Si requires $M, 216.1334$).

3-Dimethyl(phenyl) silyl-2-methylcyclohexene 14c (84\%). R_{f} (hexane) 0.40; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1659(\mathrm{C}=\mathrm{C}), 1248$ (SiMe) and $1111(\mathrm{SiPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.56-7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.32(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}=\mathrm{CH}), 2.0-1.4(7 \mathrm{H}, \mathrm{m}$, ring H$), 1.55(3 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{C}=\mathrm{CMe})$, 0.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{\mathbf{A}} \mathrm{Me}_{\mathrm{B}}$) and 0.31 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 139.8,135.3,133.7,128.6,127.6,120.2,30.1,25.5$, $25.1,21.4,-2.4$ and $-2.5 ; m / z 230\left(8 \%, \mathrm{M}^{+}\right)$and $135(100$, PhMe ${ }_{2} \mathrm{Si}$) (Found: M^{+}, 230.1493. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{Si}$ requires, M, 230.1491).

1-[1-Dimethyl(phenyl)silylethyl]-3,3-dimethylcyclopentene 16a (73%). R_{f} (hexane) 0.45 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1630(\mathrm{C}=\mathrm{C}) ; \delta$ $\left(\mathrm{CDCl}_{3}\right) 7.50-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.91(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 2.13-1.81$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHSi}$), $1.06(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCHSi}), 0.97(6 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}_{2}$) and $0.27\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right) ; m / z 205\left(11 \%, \mathrm{M}^{+}\right)$and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 258.1797 . \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{Si}$ requires M, 258.1804).

1-[α-Dimethyl(phenyl)silylbenzyl]-3,3-dimethylcyclopentene $16 \mathrm{~b}(81 \%)$. R_{f} (hexane) $0.21 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}), 1600$, 1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.2(1 \mathrm{H}$, $\mathrm{m}, \mathrm{HC}=\mathrm{C}$), $3.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSi}), 2.2\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.5$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 0.9\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right)$ and $0.3(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right) ; m / z 320\left(4 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: $\mathrm{M}^{+}, 320.1951 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}$ requires $M, 320.1960$).

1-[1-Dimethyl(phenyl)silyl-2-methylpropyl]-3,3-dimethylcyclopentene $16 \mathrm{c}(69 \%)$. $R_{\mathrm{f}}($ hexane $) 0.46 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ no $\mathrm{C}=$ C detected; $\delta\left(\mathrm{CDCl}_{3}\right) 7.54-7.27(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 4.97(1 \mathrm{H}, \mathrm{s}$, $\mathrm{HC}=\mathrm{C}), 2.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right)$, 1.56-1.45 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ and CHSi), $1.00(3 \mathrm{H}, \mathrm{s}$, CMe $_{\mathbf{A}} \mathbf{M e}_{\mathrm{B}}$), $0.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathbf{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.84(3 \mathrm{H}, \mathrm{d}, J 7$, СНМе $\mathbf{M e}_{\mathrm{B}}$), $0.83\left(3 \mathrm{H}, \mathrm{d}, J\right.$ 7, $\left.\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 286\left(2 \%, \mathrm{M}^{+}\right)$and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 286.2102 . \mathrm{C}_{19} \mathrm{H}_{30}$ Si requires M, 286.2117).

1-[1-Dimethyl(phenyl)silylethyl]-3,3-dimethylcyclohexene $16 \mathrm{~d}(51 \%) . \quad R_{\mathrm{f}}$ (hexane) 0.45 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1650 \quad$ (C=C); $\delta\left(\mathrm{CDCl}_{3}\right) 7.56-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.89(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 2.04$ 1.94 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 1.65-1.19 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHSi}$), $0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J$ 7, MeCHSi), 0.27 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{M}} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.24(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 272\left(4 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: $\mathrm{M}^{+}, 272.1971 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}$ requires $M, 272.1960$).

1-[α-Dimethyl(phenyl)silylbenzyl]-3,3-dimethylcyclohexene $16 \mathrm{e}(81 \%) . R_{\mathrm{f}}$ (hexane) $0.25 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1600$ and 1500 (Ph); $\delta\left(\mathrm{CDCl}_{3}\right) 7.41-7.02(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.27(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C})$, $2.88(1 \mathrm{H}, \mathrm{s}, \mathrm{CHSi}), 1.80-1.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.52-1.30(4 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$, $0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 334$ $\left(5 \%, \mathbf{M}^{+}\right)$and 135 ($100, \mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 394.2086$. $\mathrm{C}_{28} \mathrm{H}_{30}$ Si requires $M, 394.2117$).

1-[1-Dimethyl(phenyl)silyl-2-methylpropyl]-3,3-dimethylcyclohexene $16 \mathrm{f}\left(43 \%\right.$, with 32% recovered acetate). R_{f} (hexane) $0.44 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ no $\mathrm{C}=\mathrm{C}$ detected; $\delta\left(\mathrm{CDCl}_{3}\right) 7.56-7.28$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 1.98-1.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right)$, 1.66-1.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.56-1.20\left(5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CHSi}\right)$, $0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J$ 7, $\mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), 0.81 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.33(3 \mathrm{H}$, s, $\left.\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 300\left(2 \%, \mathrm{M}^{+}\right)$ and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 300.2293 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}$ requires $M, 300.2273$).
cis-3-Dimethyl(phenyl)silyl-5-methylcyclohexene ${ }^{14} 47$ (86\% from 45). R_{f} (hexane) $0.45 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1257$ (SiMe) and $1126(\mathrm{SiPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.6-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.7-5.6(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}$), 2.1-1.5 ($5 \mathrm{H}, \mathrm{m}$, remainder), $1.07(1 \mathrm{H}, \mathrm{dt}, J 12.6$ and $11.4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CSi}$ cis to Me), $0.94(3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{Me}), 0.31(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 134.0$, $128.9,127.7,127.2,127.1,126.1,34.0,32.7,29.5,26.5,22.4,-4.9$ and $-5.3 ; m / z 230\left(2 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: M^{+}, 230.1497. $\mathrm{C}_{15} \mathrm{H}_{22}$ Si requires $M, 230.1490$). This allylsilane (74%, as a $95: 5$ mixture with its trans isomer) was also prepared from carbamate 46 by the standard preparation.
trans-3-Dimethyl(phenyl)silyl-5-methylcyclohexene ${ }^{14} 50$ (83% from 48). R_{f} (hexane) 0.45 ; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 1260$ (SiMe) and $1126(\mathrm{SiPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.6-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.7-5.5$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 2.2-1.3 ($6 \mathrm{H}, \mathrm{m}$, remaining ring H 's), 0.88 ($3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeC}$), $0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and $0.29(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 133.9,128.9,127.7,127.3,124.3,33.0$, $31.2,26.2,24.9,21.1$ and $-4.1 ; m / z 230\left(2 \%, \mathrm{M}^{+}\right)$and $135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 230:1479. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{Si}$ requires M, 230.1490). This allylsilane (85%) was also prepared from the carbamate 49 by the standard preparation.

General Method for the Synthesis of Allylsilanes from Allylic Carbamates.-Butyllithium ($1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $2.2 \mathrm{~cm}^{3}$) was added to the carbamate (3 mmol) in THF ($5 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$, or better, in some cases, at $-78^{\circ} \mathrm{C}$, and the mixture stirred for 1 min . It was then transferred to a flask containing copper(I) iodide (3.1 mmol) and triphenylphosphine (6.2 mmol) in ether $\left(5 \mathrm{~cm}^{3}\right.$) under argon at $0^{\circ} \mathrm{C}$ and stirred for 30 min . Dimethyl(phenyl)silyllithium ($1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $4.6 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred for a further 2 h . After aqueous ammonium chloride ($30 \mathrm{~cm}^{3}$) had been added to the mixture it was extracted with ether ($2 \times 30 \mathrm{~cm}^{3}$). The combined ether extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (hexane) to remove the fastrunning silicon-containing by-products and to give the allylsilane. The following allylsilanes were made by this method.

1-[1-Dimethyl(phenyl)silylethyl]-4,4-dimethylcyclopentene 24a (54%, with 28% recovered carbamate). $R_{\mathrm{f}}($ hexane $) 0.44$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.50-7.25(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.00(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 2.07\left(2 \mathrm{H}, \mathrm{d}, J 2, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.92(1 \mathrm{H}$ dd, $J 12$ and $\left.2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.90(1 \mathrm{H}, \mathrm{dd}, J 12$ and 2 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.82(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHSi}), 1.06(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH})$, $1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 258\left(7 \%, \mathrm{M}^{+}\right)$ and 135 (100, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 258.1808. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{Si}$ requires $M, 258.1804$).

1-[α-Dimethyl(phenyl)silylbenzyl]-4,4-dimethylcyclopentene 24b (45%, with 41% recovered carbamate). $R_{\mathrm{f}}($ hexane $) 0.18$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1630(\mathrm{C}=\mathrm{C}), 1600,1580$ and $1500(\mathrm{Ph}) ;$ $\delta\left(\mathrm{CDCl}_{3}\right) 7.49-7.02(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 3.10$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHSi}$), 2.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 2.01 ($1 \mathrm{H}, \mathrm{d}, J 15$, $\mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}$), $1.97\left(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 0.99(3 \mathrm{H}, \mathrm{s}$,
$\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 320\left(10 \%, \mathrm{M}^{+}\right)$and $135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 320.1958. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Si}$ requires M, 320.1960).

1-[1-Dimethyl(phenyl)silyl-2-methylpropyl]-4,4-dimethylcyclopentene 24 c (22%, with 73% recovered carbamate). R_{f} (hexane) $0.46 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.57-$ $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.26(1 \mathrm{H}, \mathrm{t}, J 2, \mathrm{HC}=\mathrm{C}), 2.06(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSi}), 1.65(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}$), $1.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), 0.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.86\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$, $0.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{2} \mathrm{~A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 286$ $\left(13 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: $\mathrm{M}^{+}, 286.2142$. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Si}$ requires $M, 286.2117$).

1-[1-Dimethyl(phenyl)silylethyl]-5,5-dimethylcyclohexene 24d (54%, with 41% recovered carbamate). R_{f} (hexane) 0.31 ; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.50-7.29(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 5.14(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 1.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.62(1 \mathrm{H}, \mathrm{q}$, $J 7, \mathrm{MeCHSi}), 1.55\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.22(2 \mathrm{H}, \mathrm{t}, J 6$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 1.04 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{MeCHSi}$), $0.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}}\right.$ Me $\left.\mathrm{Me}_{\mathrm{B}}\right)$ and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 272\left(8 \%, \mathrm{M}^{+}\right)$and $135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 272.1955. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}$ requires M, 272.1960).

1-[α-Dimethyl(phenyl)silylbenzyl]-5,5-dimethylcyclohexene 24e $\left(20 \%\right.$, with 61% recovered carbamate). R_{f} (hexane) 0.23 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}), 1600,1580$ and $1500(\mathrm{Ph})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.41-7.27(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.53(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 2.86$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHSi}$), 2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.64(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.21\left(2 \mathrm{H}, \mathrm{t}, J 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 0.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 334\left(7 \%, \mathrm{M}^{+}\right)$and $135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 334.2137. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{Si}$ requires M , 334.2117).

1-[1-Dimethyl(phenyl)silyl-2-methylpropyl]-5,5-dimethylcyclohexene 24 f (23%, with 67% recovered carbamate). R_{f} (hexane) $0.37 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1640(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.53-$ $7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.25(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 2.03-1.83(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ and $\mathrm{Me}_{2} \mathrm{CH}$), 1.59-1.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 1.45-1.20 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ and CHSi), $0.90(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{Me}$), 0.35 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 300(3 \%$, M^{+}) and 135 ($100, \mathrm{PhMe}_{2} \mathrm{Si}$) (Found: $\mathrm{M}^{+}, 300.2290 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}$ requires $M, 300.2273$).

1-[1-Dimethyl(phenyl)silylethyl]cyclohexene 26 (44%, with 37% recovered carbamate). R_{f} (hexane) $0.46 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1650(\mathrm{C}=\mathrm{C}), 1250(\mathrm{SiMe})$ and $1113(\mathrm{SiPh}) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.51-$ $7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.19(1 \mathrm{H}, \mathrm{m}, \mathrm{HC=C}), 1.98(2 \mathrm{H}, \mathrm{m}$, ring H$)$, $1.71(2 \mathrm{H}, \mathrm{m}$, ring H$), 1.59(1 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{SiCH}), 1.50(4 \mathrm{H}, \mathrm{m}$, ring H), 1.06 ($3 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{SiCHMe}$), 0.28 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.4,138.8,133.9,128.7$, $127.5,118.7,30.1,29.8,25.4,23.2,22.7,14.3,-4.0$ and $-4.6 ; m / z$ $244\left(6 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and $108(20, \mathrm{M}-$ $\mathrm{PhMe}_{2} \mathrm{SiH}$) (Found: $\mathrm{M}^{+}, 244.1631 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{Si}$ requires M , 244.1647).
(E-) and (Z)-1-Dimethyl(phenyl)silyl-2-ethylidenecyclohexane E-28, Z-28 and 26 ($0.51 \mathrm{~g}, 51 \%$) in a 1:1:1 ratio as an inseparable mixture. R_{f} (hexane) $0.46 ; v_{\max }$ (film)/ $\mathrm{cm}^{-1} 1250$ (SiMe) and $1110(\mathrm{SiPh}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54-7.30(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}=\mathrm{CH}$), $5.11(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J 5.5$ with fine coupling, $\mathrm{C}=\mathrm{C} H \mathrm{Me}), 5.00$ $(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{C}=\mathrm{C} H \mathrm{Me}), 2.50-1.10(12 \mathrm{H}, \mathrm{m}$, ring Hs and $\mathrm{C}=\mathrm{CH} M e$), 1.39 ($3 \mathrm{H}, \mathrm{dd}, J 7.5, \mathrm{SiCH} M e$), $0.39(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.28\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$ and $0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ (in addition to the signals from 26); $m / z 244\left(3.4 \%, \mathrm{M}^{+}\right), 135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and 108 (20, $\mathrm{M}-\mathrm{PhMe}_{2} \mathrm{SiH}$) (Found: $\mathrm{M}^{+}, 244.1659 . \mathrm{C}_{16}{ }^{-}$ $\mathrm{H}_{24} \mathrm{Si}$ requires $M, 244.1647$).
(E)-1-Dimethyl(phenyl)silyl-1-phenylbut-2-ene E-21a (75\% from Z-29a). R_{f} (hexane) $0.35 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1257$ (SiMe),
$1126(\mathrm{SiPh})$ and $975(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.8(10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ph}), 5.77(1 \mathrm{H}, \mathrm{ddq}, J 15.1,9.3$ and $1.3, \mathrm{CH}=\mathrm{CHMe})$, 5.33 $(1 \mathrm{H}, \mathrm{ddq}, J 0.6,15.1$ and $5.9, \mathrm{CH}=\mathrm{CH} M e$), $3.08(1 \mathrm{H}, \mathrm{d}$ quintet, $J 9.3$ and $0.6, \mathrm{CHSi}$), 1.68 (3 H , ddd, $J 5.9,1.3$ and $0.6, \mathrm{MeC}=\mathrm{C}$), $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and 0.24 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.4,137.2,134.3,130.0,128.9,128.0,127.4,124.5$, $42.5,18.0,-4.2$ and $-4.7, m / z 266\left(6 \%, \mathrm{M}^{+}\right)$and $135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) (Found: M^{+}, 266.1504. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Si}$ requires M, 266.1491).
(E)-3-Dimethyl(phenyl)silyl-2-methylhex-4-ene E-21b (64\% from Z-29b. R_{f} (hexane) $0.35 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1247$ (SiMe), $1111(\mathrm{SiPh})$ and $971(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.35(1 \mathrm{H}, \mathrm{dd}, J 15.5$ and 9.8, CH=CHMe), $5.23(1 \mathrm{H}, \mathrm{dq}, J 15.5$ and $5.4, \mathrm{CH}=\mathrm{CH} \mathrm{Me}), 1.80\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 4.9$ and $6.7, \mathrm{CH} \mathrm{Me}_{2}$), $1.68(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{MeC}=\mathrm{C}), 1.60(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 4.9 , $\left.\mathrm{Pr}^{\mathrm{i}} \mathrm{CHSi}\right), 0.83\left(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}_{2} \mathrm{CH}\right), 0.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 232\left(1 \%, \mathrm{M}^{+}\right), 135(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$) and 96 (16, $\mathrm{M}-\mathrm{PhMe}_{2} \mathrm{SiH}$) (Found: $\mathrm{M}^{+}, 232.1658$. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{Si}$ requires $M, 232.1647$).
(E)-2-Dimethyl(phenyl)silyl-4-phenylbut-3-ene E-22a (68\% from Z-30a). R_{f} (hexane) $0.35 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1249\left(\mathrm{SiMe}_{2}\right)$, $1117(\mathrm{SiPh})$ and $977(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.7-7.1(10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ph}), 6.31(1 \mathrm{H}, \mathrm{dd}, J 16$ and $5, \mathrm{C} H=\mathrm{CHPh}), 6.16(1 \mathrm{H}, \mathrm{dd}, J$ 16 and $2, \mathrm{CH}=\mathrm{CH} \mathrm{Ph}$), 2.06 (1 H , ddq, $J 2,5$ and 7, MeCHSi), 1.19 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCHSi}$), 0.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and 0.34 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 266\left(6 \%, \mathrm{M}^{+}\right), 135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ and $91\left(10, \mathrm{C}_{7} \mathrm{H}_{7}\right)$ (Found: M^{+}, 266.1485. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Si}$ requires M, 266. 1491).
(E)-2-Dimethyl(phenyl)silyl-5-methylhex-3-ene E-22b (87\% from E- or Z-30b). R_{f} (hexane) 0.45 ; $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1248$ (SiMe), $1112(\mathrm{SiPh})$ and $974 \mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.3(5 \mathrm{H}, \mathrm{m}$, Ph), 5.38 (1 H , ddd, $J 15.4,7.7$ and $0.9, \mathrm{CH}=\mathrm{CHCHSi}), 5.18(1 \mathrm{H}$, ddd, $J 15.4,6.7$ and $0.9, \mathrm{CH}=\mathrm{CHCHSi}), 2.26(1 \mathrm{H}$, d octet, $J 0.9$ and $6.7, \mathrm{CH} \mathrm{Me} 2$), $1.75(1 \mathrm{H}, \mathrm{ddq}, J 0.9,7.7$ and $7.3, \mathrm{CHSi}), 1.04$ ($3 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{MeCHSi}$), $0.97\left(6 \mathrm{H}, \mathrm{d}, J 6.7, M e_{2} \mathrm{CH}\right.$) and 0.27 ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$); $m / z 232\left(2 \%, \mathrm{M}^{+}\right)$and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right)$ (Found: M^{+}, 232.1633. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{Si}$ requires $M, 232.1647$).
(E)-2-Dimethyl(phenyl)silyl-2-methylpent-3-ene 39 (53%). R_{f} (hexane) $0.45 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1259$ (SiMe), 1127 (SiPh) and $990(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.46(1 \mathrm{H}, \mathrm{dq}, J$ 15.4 and $1.0, \mathrm{CH}=\mathrm{CHMe}), 5.08(1 \mathrm{H}, \mathrm{dq}, J 15.4$ and 5.8 , $\mathrm{CH}=\mathrm{CH} \mathrm{Me}), 1.68(3 \mathrm{H}, \mathrm{dd}, J 5.8$ and $1, \mathrm{MeC}=\mathrm{C}), 0.97(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{2} \mathrm{CSi}$) and $0.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 139.1,137.5$, $134.7,128.8,127.3,120.0,25.5,23.1,18.2$ and $-6.0 ; \mathrm{m} / \mathrm{z} 218$ (3%, \mathbf{M}^{+}), $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right), 84\left(15, \mathrm{M}-\mathrm{PhMe}_{2} \mathrm{Si}+\mathrm{H}\right), 68(16$, $\mathrm{M}-\mathrm{PhMe}_{2} \mathrm{Si}-\mathrm{Me}$) and 55 (18, $\mathrm{M}-\mathrm{PhMe}_{2} \mathrm{Si}-\mathrm{C}_{2} \mathrm{H}_{4}$) (Found: $\mathrm{M}^{+}, 218.1486 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{Si}$ requires $M, 218.1491$).
(RS,SR)-[2-Dimethyl(phenyl)silylpropylidene]-4-phenylcyclohexane 52 (92%). M.p. $38-40^{\circ} \mathrm{C}$; identical (m.p., ${ }^{13} \mathrm{C}$ NMR) with an authentic sample. ${ }^{6}$
The following silanes, identified only by the part or all of their ${ }^{1} \mathrm{H}$ NMR spectra given below, were produced as minor components of product mixtures.
3-Dimethyl(phenyl)silylbut-1-ene ${ }^{27} \quad$ 3. $\delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.7-7.2 $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.95\left(1 \mathrm{H}\right.$, ddd, $J 17,12$ and $\left.8, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.95(1 \mathrm{H}$, $\mathrm{dt}, J 12$ and $\left.2, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.90\left(1 \mathrm{H}, \mathrm{dt}, J 17\right.$ and $\left.2, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSi}), 1.15(3 \mathrm{H}, \mathrm{d}, J 8, \mathrm{MeCSi})$ and $0.40(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) \quad 27.2,13.1,-5.0$ and $5.4 ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $141.2,137.9,134.0,129.0,127.7,110.6,27.2,13.2,-4.9$ and -5.4 .
(Z)-2-Dimethyl(phenyl)silylpent-3-ene Z-8. $\delta\left(\mathrm{CDCl}_{3}\right) \quad 7.6$ 7.3 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.5-5.1(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 2.10(1 \mathrm{H}, \mathrm{dq}, J 10.5$ and $7.2, \mathrm{CHSi}), 1.46(3 \mathrm{H}, \mathrm{dd}, J 6.5$ and $1.5, \mathrm{MeC}=\mathrm{C}), 1.00(3 \mathrm{H}$, d, J 7.2, MeCHSi), $0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.26(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$) matching the ${ }^{1} \mathrm{H}$ NMR spectrum of the authentic sample reported in the following paper.
(Z)-1-Dimethyl(phenyl)silyl-1-phenylbut-2-ene Z-21a. δ $\left(\mathrm{CDCl}_{3}\right)$ 7.5-6.9 ($10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}$), $5.79(1 \mathrm{H}, \mathrm{ddq}, J 11.4,10.8$ and $1.7, \mathrm{CH}=\mathrm{CHMe}), 5.48(1 \mathrm{H}, \mathrm{dq}, J 10.8$ and $6.7, \mathrm{CH}=\mathrm{CH} \mathrm{Me})$,
3.45 ($1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{PhCHSi}$), 1.47 (3 H , dd, J 6.7 and 1.7, $\mathrm{MeC}=\mathrm{C}), 0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ matching the ${ }^{1} \mathrm{H}$ NMR spectrum of the authentic sample reported in the following paper.
(Z)-3-Dimethyl(phenyl)silyl-2-methylhex-4-ene Z-21b. δ $\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.65(1 \mathrm{H}, \mathrm{dq}, J 11.0$ and 6.4 , $\mathrm{CH}=\mathrm{CH} \mathrm{Me}), 2.04(1 \mathrm{H}, \mathrm{dd}, J 11.4$ and $4.5, \mathrm{CHSi}), 1.46(3 \mathrm{H}$, dd, $J 6.7$ and $1.5, \mathrm{MeC}=\mathrm{C}), 0.84\left(6 \mathrm{H}, \mathrm{d}, J 5.9, M e_{2} \mathrm{CH}\right), 0.32(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ matching the ${ }^{1} \mathrm{H}$ NMR spectrum of the authentic sample reported in the following paper.
(Z)-2-Dimethyl(phenyl)silyl-5-methylhex-3-ene Z-22b. δ $\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.2-4.9(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 2.47$ (1 H , octet, $J 7, \mathrm{CH} \mathrm{Me}_{2}$), $2.10(1 \mathrm{H}, \mathrm{dq}, J 10$ and $7, \mathrm{CHSi}), 1.02$ ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCHSi}$), $0.92\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) 0.80(3 \mathrm{H}$, d, $\left.J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.28(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}$) matching the ${ }^{1} \mathrm{H}$ NMR spectrum of the authentic sample reported in the following paper.

3-Dimethyl(phenyl)silyl-3-methylbut-1-ene 27 37. $\delta\left(\mathrm{CDCl}_{3}\right)$ 7.7-7.2 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.85\left(1 \mathrm{H}, \mathrm{dd}, J 17\right.$ and $\left.11, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.90$ $\left(1 \mathrm{H}\right.$, dd, $J 11$ and $\left.2, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.75(1 \mathrm{H}, \mathrm{dd}, J 17$ and 2 , $\left.\mathrm{C}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{CSi}\right)$ and $0.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$.
(Z)-4-Trimethylsilylpent-2-ene ${ }^{51} \quad$ Z-41a. $\delta\left(\mathrm{CDCl}_{3}\right) \quad 5.5-5.1$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 1.87(1 \mathrm{H}, \mathrm{dq}, J 10.5$ and $7.1, \mathrm{MeCHSi}), 1.56$ (3 H , dd, $J 6.5$ and $1.4, \mathrm{MeC}=\mathrm{C}$), $1.02(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{MeCHSi})$ and $-0.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$.
(Z)-1-Phenyl-1-trimethylsilylbut-2-ene ${ }^{4} \quad$ Z-41b. $\quad \delta\left(\mathrm{CDCl}_{3}\right)$ $7.3-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.86(1 \mathrm{H}, \mathrm{tq}, J 11.5$ and $1.8, \mathrm{CH}=\mathrm{CHMe})$, $5.50(1 \mathrm{H}, \mathrm{dq}, J 11.5$ and $6.9, \mathrm{CH}=\mathrm{CH} \mathrm{Me}), 3.28(1 \mathrm{H}, \mathrm{d}, J 11.5$, $\mathrm{PhCHSi}), 1.63(3 \mathrm{H}, \mathrm{dd}, J 6.9$ and $1.8, \mathrm{MeC}=\mathrm{C})$ and $0.05(9 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe}_{3}$).
(Z)-3-Methyl-1-trimethylsilylbut-1-ene ${ }^{52} \quad$ Z-42. $\quad \delta\left(\mathrm{CDCl}_{3}\right)$ $6.08(1 \mathrm{H}, \mathrm{dd}, J 14$ and $9, \mathrm{C} H=\mathrm{CHSi}), 5.34(1 \mathrm{H}, \mathrm{d}, J 14$, $\mathrm{CH}=\mathrm{C} H \mathrm{Si}), 2.48(1 \mathrm{H}, \mathrm{dq}, J 9$ and $6, \mathrm{CHMe} 2), 0.95(6 \mathrm{H}, \mathrm{d}, J 6$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right)$ and $0.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$.

Methyl Cyano-cuprate Reaction: (E)-2-Trimethylsilylpent-3ene E-41a.-Methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Et}_{2} \mathrm{O} ; 2.4 \mathrm{~cm}^{3}$) was added to a stirred suspension of copper (I) cyanide $(325 \mathrm{mg}, 3.6$ mmol) in dry ether ($8 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$ and the mixture stirred at $0^{\circ} \mathrm{C}$ for 15 min . The benzoate $Z-40 \mathrm{~b}(300 \mathrm{mg}$, 1.2 mmol) in dry ether ($3 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred at $0^{\circ} \mathrm{C}$ for 3 h . The usual aqueous work-up procedure and chromatography (pentane) of the residue gave the allylsilane ${ }^{53}\left(94 \mathrm{mg}, 55 \%\right.$); $R_{\text {f }}$ (hexane) $0.6 ; \delta\left(\mathrm{CDCl}_{3}\right)$ $5.43(1 \mathrm{H}$, ddq, $J 15.2,7.7$ and $1.3, \mathrm{CH}=\mathrm{CHMe}), 5.20(1 \mathrm{H}, \mathrm{ddq}, J$ $15.2,1.3$ and $6.2, \mathrm{CH}=\mathrm{CH} \mathrm{Me}), 1.65(3 \mathrm{H}, \mathrm{dt}, J 6.2$ and 1.3 , $\mathrm{MeC}=\mathrm{C}), 1.49(1 \mathrm{H}, \mathrm{dq}, J 7.7$ and $7.3, \mathrm{MeCHSi}), 1.01(3 \mathrm{H}, \mathrm{d}, J$ $7.3, \mathrm{MeCHSi})$ and $-0.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$. This allylsilane $(0.20 \mathrm{~g}$, 74%) was also prepared from the carbamate $Z-40 a$ by the standard method described for the preparation of 44.
(E)-1-Phenyl-1-trimethylsilylbut-2-ene E-41b.-Butyllithium $\left(1.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in hexane; $1.26 \mathrm{~cm}^{3}$) was stirred with the carbamate $Z-40 a(0.5 \mathrm{~g})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ and copper(I) iodide $(0.361 \mathrm{~g})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to it. After 10 min , phenyllithium ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 1.9$ cm^{3}) was added to the mixture, which was then stirred for 3 h . The usual aqueous work-up procedure and chromatography (pentane) of the residue gave the allylsilane ${ }^{4}(87 \%) ; R_{f}$ (hexane) $0.27 ; \delta\left(\mathrm{CDCl}_{3}\right) 7.3-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.81(1 \mathrm{H}, \mathrm{ddq}, J 14.9,9.9$ and $1.4, \mathrm{CH}=\mathrm{CHMe}), 5.42(1 \mathrm{H}, \mathrm{dq}, J 14.9$ and $6.4, \mathrm{CH}=\mathrm{CH} \mathrm{Me})$, $2.89(1 \mathrm{H}, \mathrm{d}, J 9.9, \mathrm{PhCH}), 1.72(3 \mathrm{H}, \mathrm{dd}, J 6.4$ and $1.4, \mathrm{MeC}=\mathrm{C})$ and $-0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$.

Dimethyl Cuprate Reaction: (E)-3-Methyl-1-trimethylsilylbut-1-ene E-42.-Methyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Et}_{2} \mathrm{O} ; 2.4 \mathrm{~cm}^{3}$) was added to a stirred suspension of copper(I) iodide (345 mg ,
1.8 mmol) in dry ether ($10 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min after which the benzoate $E-40 \mathrm{~b}$ ($300 \mathrm{mg}, 1.2 \mathrm{mmol}$) in ether ($5 \mathrm{~cm}^{3}$) was added to it and stirring continued for a further 3 h at $0^{\circ} \mathrm{C}$. The usual aqueous work-up procedure and chromatography (pentane) of the residue gave the vinylsilane ${ }^{52}$ ($75 \mathrm{mg}, 44 \%$) as 91% of the mixture of isomers; R_{f} (hexane) $0.6 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1262$ (SiMe); $\delta\left(\mathrm{CDCl}_{3}\right) 5.98$ (1 H , dd, $J 18.7$ and $5.8, \mathrm{CH}=\mathrm{CHSi}$), $5.54(1 \mathrm{H}, \mathrm{dd}, J 18.7$ and 1.3, $\mathrm{CH}=\mathrm{CHSi}), 2.27\left(1 \mathrm{H}\right.$, d octet, $J 1.3$ and $\left.5.8, \mathrm{CH} \mathrm{Me}_{2}\right), 0.97(6 \mathrm{H}$, $\left.\mathrm{d}, J 5.8, \mathrm{Me}_{2} \mathrm{CH}\right)$ and $0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 142\left(6 \%, \mathrm{M}^{+}\right)$, 127 (35, M - Me), 99 (17, M - $\mathrm{C}_{3} \mathrm{H}_{7}$) and 73 (100, SiMe_{3}) (Found: $\mathrm{M}^{+}, 142.1178 . \mathrm{C}_{8} \mathrm{H}_{18} \mathrm{Si}$ requires $M, 142.1178$).

4-Methyl-2-trimethylsilylpent-3-ene 44.-Methyllithium (1.5 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Et}_{2} \mathrm{O} ; 0.67 \mathrm{~cm}^{3}$) was added to a stirred solution of the carbamate $43(277 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. After 0.5 min , the solution was transferred to a stirred suspension of copper(I) iodide $(190 \mathrm{mg}$, $1.0 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ also under nitrogen at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . Methyllithium $\left(1.5 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in ether; $0.67 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred for 3 h . The usual aqueous work-up procedure and chromatography of the residue (pentane) gave the allylsilane ($114 \mathrm{mg}, 73 \%$); $R_{\text {f }}$ (hexane) $0.6 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1259$ (SiMe) and $998(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 4.93(1 \mathrm{H}, \mathrm{d}$ septet, $J 10.8$ and 1.4 , $\mathrm{C}=\mathrm{CH}), 1.70(1 \mathrm{H}, \mathrm{dq}, J 10.8$ and $7.0, \mathrm{C} H \mathrm{Me}), 1.69(3 \mathrm{H}, \mathrm{d}, J 1.4$, $\left.M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{Me}_{\mathrm{A}} M e_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 0.98(3 \mathrm{H}, \mathrm{d}, J$ $7.0, \mathrm{MeCH})$ and $-0.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 156\left(6 \%, \mathrm{M}^{+}\right), 82$ ($6, \mathrm{M}-\mathrm{SiMe}_{3} \mathrm{H}$) and 73 (100, SiMe_{3}) (Found: $\mathrm{M}^{+}, 156.1322$. $\mathrm{C}_{9} \mathrm{H}_{20}$ Si requires $M, 156.1335$).

2,2-Dimethylcyclopentanone.-5,5-Dimethylcyclopent-2-enone 42 was stirred with 10% palladium on charcoal in methanol ($100 \mathrm{~cm}^{3}$) under hydrogen at room temp. for 6 h . The solvent was evaporated under reduced pressure to give the ketone (96%), which was identical with an authentic sample. ${ }^{41}$

3,3-Dimethylcyclopentanone.-Methyllithium ($1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in $\mathrm{Et}_{2} \mathrm{O} ; 68.3 \mathrm{~cm}^{3}$) was added to a stirred slurry of copper(I) iodide (55.0 mmol) in ether ($40 \mathrm{~cm}^{3}$) under argon at $0^{\circ} \mathrm{C}$. 3-Methylcyclopent-2-enone (4.8 g) was added dropwise to the mixture, which was stirred for 2 h and then poured into aqueous ammonium chloride and extracted with ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the ketone (83%), b.p. 150 $152^{\circ} \mathrm{C}$ (lit., ${ }^{54} 153-154^{\circ} \mathrm{C}$), identical (IR and ${ }^{1} \mathrm{H}$ NMR) with those reported. ${ }^{54}$

2,2-Dimethylcyclohexanone.-This was made by the method of Paterson ${ }^{41}$ from 2-methyl-1-trimethylsilyloxycyclohexene. ${ }^{55}$ The phenythiomethylation worked well (83%) but the Raney nickel desulfurisation gave the ketone (27%), identical (IR and ${ }^{1} \mathrm{H}$ NMR) with an authentic sample, in low yield on this occasion.

4,4-Dimethylcyclohexanone.-4,4-Dimethylcyclohex-2-
enone ${ }^{56}(35 \mathrm{mmol})$ and 10% palladium on charcoal were stirred in methanol $\left(100 \mathrm{~cm}^{3}\right)$ under hydrogen at room temp. for 6 h . The solvent was evaporated under reduced pressure to give the ketone (94%) as needles, m.p. $38-40^{\circ} \mathrm{C}$ (lit., ${ }^{57} \mathrm{~m} . \mathrm{p} .40-42^{\circ} \mathrm{C}$); $\nu_{\max }(\mathrm{mull}) / \mathrm{cm}^{-1} 1715(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 2.3(4 \mathrm{H}, \mathrm{t}, J 7$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.6\left(4 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and 1.0 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}$).

General Method for the Synthesis of Exocyclic Enones.-A solution of the ketone (13.4 mmol) in THF ($5 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of LDA (14.7 mmol) in THF (20 cm^{3}) at $-78^{\circ} \mathrm{C}$. After 20 min the aldehyde ($\mathrm{MeCHO}, \mathrm{PhCHO}$ or $\left.\mathrm{Pr}^{\mathrm{i}} \mathrm{CHO}\right)(16.0 \mathrm{mmol})$ was added to the solution, which was
then stirred for a further 2 h at $-78^{\circ} \mathrm{C}$. After this it was quenched with aqueous ammonium chloride and extracted with ether. The extract was washed with brine, dried (MgSO_{4}) and evaporated under reduced pressure to give a yellow oil. To this dissolved in dichloromethane were added triethylamine (30 mmol) and methanesulfonyl chloride (15 mmol) and the solution stirred at $0^{\circ} \mathrm{C}$ for 1 h . DBU (30 mmol) was then added to the solution, which was then warmed to room temp. After 2 h , the reaction was quenched with aqueous ammonium chloride and extracted with ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give an oil which was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the ketone. The following α, β-unsaturated ketones were made by this method.
(E)-2-Ethylidene-5,5-dimethylcyclopentanone $\quad(74 \%) . \quad R_{f}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.38 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C})$ $\delta\left(\mathrm{CDCl}_{3}\right) 6.62(1 \mathrm{H}, \mathrm{qt}, J 7$ and $2, \mathrm{HC}=\mathrm{C}), 2.48(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.82(3 \mathrm{H}, \mathrm{dt}, J 7$ and $2, \mathrm{MeC}=\mathrm{C}), 1.74(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2}\right), 1.03\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}\right) ; m / z 138\left(65 \%, \mathrm{M}^{+}\right)$and $69(100)$ (Found: $\mathrm{M}^{+}, 138.1051 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ requires $M, 138.1045$).
(E)-2-Ethylidene-4,4-dimethylcyclopentanone (41\%). $\boldsymbol{R}_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.36 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 6.55(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.12$ ($2 \mathrm{H},\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$), $1.73(3 \mathrm{H}, \mathrm{dt}, J 7$, and $2, \mathrm{MeC}=\mathrm{C}), 1.04$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2}$); $m / z 138\left(72 \%, \mathrm{M}^{+}\right)$and 123 ($100, \mathrm{M}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}, 138.1055 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}$ requires $M, 138.1045$).
(E)-2-(2-Methylpropylidene)-5,5-dimethylcyclopentanone $(82 \%) . \quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.40 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$ and 1640; $\delta\left(\mathrm{CDCl}_{3}\right) 6.41(1 \mathrm{H}, \mathrm{dt}, J 7$ and $3, \mathrm{HC}=\mathrm{C}), 2.50(2 \mathrm{H}, \mathrm{dt}$, $J 3$ and $\left.7, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.60-2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 1.72(2 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{CH}_{2}\right), 1.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{CC}=\mathrm{O}\right), 1.02\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right)$; $m / z 166\left(45 \%, \mathrm{M}^{+}\right)$and $151(100, \mathrm{M}-\mathrm{Me})$ (Found: M^{+}, 166.1358. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$ requires $M, 166.1358$).
(E)-2-(2-Methylpropylidene)-4,4-dimethylcyclopentanone
$(43 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.42 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.35(1 \mathrm{H}, \mathrm{dt}, J 8$ and $2.5, \mathrm{HC}=\mathrm{C}), 2.37$ ($\left.2 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.50-2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHC}=\mathrm{C}), 2.14(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.00\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right) ; m / z$ $166\left(35 \%, \mathrm{M}^{+}\right)$and 151 (100, M - Me) (Found: $\mathrm{M}^{+}, 166.1353$. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}$ requires $M, 166.1358$).
(E)-2-Ethylidene-6,6-dimethylcyclohexanone 62 ($\mathrm{R}=\mathrm{Me}$) $(78 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.40 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and $\left.1620(\mathrm{C}=\mathrm{C}) ; \delta \mathrm{CDCl}_{3}\right) 6.57(1 \mathrm{H}, \mathrm{qt}, J 7$ and $2, \mathrm{HC}=\mathrm{C}), 2.46$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.78-1.60\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and $\left.\mathrm{MeC}=\mathrm{C}\right)$ and $1.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; m / z 152\left(100 \% \mathrm{M}^{+}\right)$(Found: M^{+}, 152.1204. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ requires $M, 152.1201$).
(E)-2-Benzylidene-6-methylcyclohexanone ${ }^{43}$ 61a (78\%).
(E)-6-Methyl-2-(2-methylpropylidene)cyclohexanone ${ }^{43}$ 61b (72\%)
(E)-2-Ethylidene-4,4-dimethylcyclohexanone $\quad(81 \%) . \quad R_{f}-$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.38 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and $1620(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 6.70(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{HC}=\mathrm{C}), 2.42\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$, $2.26\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.70(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeC}=\mathrm{C}), 1.66(2 \mathrm{H}, \mathrm{t}, J$ $\left.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.02\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; m / z 152\left(100 \%, \mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 152.1208 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ requires $M, 152.1201$).
(E)-2-Benzylidene-4,4-dimethylcyclohexanone (61\%). $\boldsymbol{R}_{\mathrm{f}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.30 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1600$, 1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.52(1 \mathrm{H}, \mathrm{t}, J 2, \mathrm{HC}=\mathrm{C}), 7.35-$ $7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.54(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.75\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.02(6 \mathrm{H}, \mathrm{s}$, Me_{2}) (Found: $\mathrm{M}^{+}, 214.1352 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$ requires $M, 214.1358$).
(E)-4,4-Dimethyl-2-(2-methylpropylidene)cyclohexanone $(71 \%) . \quad R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.36 ; \quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and $1620(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.38(1 \mathrm{H}, \mathrm{dt}, J 9$ and $2, \mathrm{HC}=\mathrm{C}), 2.50$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}$), 2.41 ($2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 2.27 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.65\left(2 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$ and $0.98\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right) ; m / z 180\left(46 \%, \mathrm{M}^{+}\right), 109(100)$ (Found: $\mathrm{M}^{+}, 180.1517 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}$ requires $M, 180.1514$).
(E)-4,6-Dimethylhept-4-en-3-one ${ }^{58} 63$ (85%). $\quad \boldsymbol{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$0.3 ; v_{\max } 1680(\mathrm{C}=\mathrm{O})$ and $1620(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.37(1 \mathrm{H}$, $\mathrm{dq}, J 9$ and $1, \mathrm{HC}=\mathrm{C}), 2.68-2.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.64(2 \mathrm{H}, \mathrm{q}$, $J 7, \mathrm{MeCH}_{2}$), 1.75 ($3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{MeC}=\mathrm{C}$), $1.05(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.M e \mathrm{CH}_{2}\right), 1.00\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right) ; m / z 140\left(50 \%, \mathrm{M}^{+}\right)$and $111(100, \mathrm{M}-\mathrm{Et})$ (Found: $\mathrm{M}^{+}, 140.1214 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ requires M, 140.1201).
(E)-2-Benzylidene-5,5-dimethylcyclopentanone.-Benzaldehyde (12.0 mmol), 2,2-dimethylcyclopentanone (10.0 mmol) and sodium methoxide (15.0 mmol) were kept in methanol at room temp. for 16 h . The mixture was quenched $(\mathrm{HCl}, 3 \mathrm{~mol}$ dm^{-3}) and extracted with ether. The organic layer was washed with aqueous sodium hydrogen carbonate, dried $\left(\mathbf{M g S O}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the ketone $(84 \%) ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathbf{0 . 4 0}$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C}), 1580$ and $1500(\mathrm{Ph})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.3(6 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}$ and Ph$), 2.9(2 \mathrm{H}, \mathrm{td}, J 7$ and $\left.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.8\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right)$ and $1.1(6 \mathrm{H}, \mathrm{s}$, CMe_{2}); $m / z 200\left(8 \%, \mathrm{M}^{+}\right), 185(37, \mathrm{M}-\mathrm{Me}), 116(100)$ (Found: $\mathrm{M}^{+}, 200.1200 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ requires $M, 200.1201$).
(E)-2-Benzylidene-4,4-dimethylcyclopentanone.-Benzaldehyde (15.0 mmol) and 3,3-dimethylcyclopentanone (12.0 mmol) were treated similarly with sodium methoxide (20.0 mmol) to give the ketone (66%) as prisms, m.p. $66-68{ }^{\circ} \mathrm{C}$ (hexane-Et $\left.{ }_{2} \mathrm{O}\right) ; \quad R_{\mathrm{f}} \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.42 ; \quad v_{\max }(\mathrm{mull}) / \mathrm{cm}^{-1} \quad 1710$ $(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}), 1600$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.52-7.33$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}$ and Ph$), 2.76\left(2 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.25(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $1.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right) ; m / z 200\left(46 \%, \mathrm{M}^{+}\right)$and 116 (100) (Found: M^{+}, 200.1199. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ requires M, 200.1201) (Found: C, 83.8; $\mathrm{H}, 7.9 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 83.9 ; \mathrm{H}$, 8.0%).
(E)-2-Benzylidene-6,6-dimethylcyclohexanone 62a.-The ketone 61 a (13.9 mmol), methyl iodide (28.0 mmol) and potassium tert-butoxide (27.9 mmol) in benzene ($30 \mathrm{~cm}^{3}$) were stirred at room temperature for 3 h . The mixture was quenched with aqueous ammonium chloride and extracted with ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the ketone (92%) identical (${ }^{1} \mathrm{H}$ NMR and IR) with that reported. ${ }^{58}$
(E)-6,6-Dimethyl-2-(2-methylpropylidene)cyclohexanone 62b.-The ketone 61b (20.0 mmol) and LDA (22.0 mmol) were stirred in THF ($30 \mathrm{~cm}^{3}$) at $-78{ }^{\circ} \mathrm{C}$ for 2 h . Methyl iodide (40.0 mmol) was added to the solution, which was then warmed to $0^{\circ} \mathrm{C}$ over 6 h . The mixture was quenched with aqueous ammonium chloride and extracted with ether. The extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the ketone (84%) identical (${ }^{1} \mathrm{H}$ NMR and IR) with that reported. ${ }^{58}$
(E)-2,4,6-Trimethylhept-4-en-3-one 64.-This was made from 63 by the same method to give the ketone (74%); $R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $0.30 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1685(\mathrm{C}=\mathrm{O})$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $6.38(1 \mathrm{H}, \mathrm{dq}, J 9$ and $1, \mathrm{HC}=\mathrm{C}), 3.30(1 \mathrm{H}$, septet, $J 7$, $\mathrm{Me}_{2} \mathrm{CHC}=\mathrm{O}$), $2.71\left(1 \mathrm{H}\right.$, d septet, $J 9$ and $\left.7, \mathrm{Me}_{2} \mathrm{CHCH}\right), 1.77$ ($3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{MeC}=\mathrm{C}$), $1.06\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right)$ and $1.04(6 \mathrm{H}, \mathrm{d}$, $\left.J 7, M e_{2} \mathrm{CH}\right) ; m / z 154\left(28 \%, \mathrm{M}^{+}\right), 111(100, \mathrm{M}-\operatorname{Pri})$ (Found: $\mathrm{M}^{+}, 154.1356 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ requires $M, 154.1358$).

General Method for the Reduction of Enones to Allylic Alcohols.-Sodium borohydride (7.10 mmol) was added to a stirred mixture of the enone $(6.40 \mathrm{mmol})$ and cerium(III) chloride (7.25 mmol) in methanol $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 5 min , the mixture was quenched with aqueous ammonium chloride
and extracted with ether. The ether layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the alcohol. The following allyl alcohols were made by this method.
(E)-2-Ethylidene-5,5-dimethylcyclopentanol (90\%). $\quad R_{r_{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1640(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.55-5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{HC=C}), 3.83(1 \mathrm{H}, \mathrm{s}, \mathrm{HCO}), 2.30-$ $2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.60(3 \mathrm{H}, \mathrm{dq}, J 7$ and $1, \mathrm{MeC}=\mathrm{C}), 1.60-$ $1.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and OH$), 0.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 140\left(38 \%, \mathrm{M}^{+}\right)$and $55(100)$ (Found: $\mathrm{M}^{+}, 140.1193 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ requires $M, 140.1201$).
(E)-2-Ethylidene-4,4-dimethylcyclopentanol $(93 \%) . R_{f}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2}\right) 0.24 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$ and $1640(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.6-5.4(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 4.5(1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHOH})$, 2.2-2.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $1.9\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}$), $1.7(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.6(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeC}=\mathrm{C}), 1.5(1 \mathrm{H}, \mathrm{dd}, J 12$ and 7, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}$), 1.1 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.95(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 140\left(40 \%, \mathrm{M}^{+}\right)$and 55 (100) (Found: M^{+}, 140.1197. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}$ requires $M, 140.1203$).
(E)-2-Benzylidene-5,5-dimethylcyclopentanol (92\%). $\quad R_{f^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.20 ; v_{\text {max }}($ mull $) 3350(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{C}), 1600$ and 1500 $(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.5(1 \mathrm{H}, \mathrm{q}, J 2, \mathrm{HC=C})$, $4.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.8-2.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.8-1.5$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ and OH), $1.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and 0.9 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 202\left(77, \mathrm{M}^{+}\right), 187(92, \mathrm{M}-\mathrm{Me})$ and 91 (100, PhCH_{2}) (Found: $\mathrm{M}^{+}, 202.1357 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires M, 202.1358).
(E)-2-Benzylidene-4,4-dimethylcyclopentanol (84%). $R_{f^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.22 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1650(\mathrm{C}=\mathrm{C}), 1600$, 1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.6(1 \mathrm{H}, \mathrm{m}$, $\mathrm{HC=C}), 4.7(1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHOH}), 2.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.9(1 \mathrm{H}$, dd, $J 13$ and $\left.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHOH}\right), 1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.4(1 \mathrm{H}, \mathrm{dd}, J$ 13 and $\left.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CHOH}\right), 1.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.9(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 202\left(56 \%, \mathrm{M}^{+}\right)$and 116 (100) (Found: M^{+}, 202.1358. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires $M, 202.1358$).
(E)-5,5-Dimethyl-2-(2-methylpropylidene)cyclopentanol $(94 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.27 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and 1650 $(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.25(1 \mathrm{H}, \mathrm{dq}, J 9$ and $2, \mathrm{HC=C}), 3.81(1 \mathrm{H}, \mathrm{s}$, CHOH), 2.35 (1 H , d septet, $J 9$ and 7, $\mathrm{Me}_{2} \mathrm{CH}$), 2.26-2.14 (2 H , $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.60-1.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$ and OH$), 0.97$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) $0.95\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.94(3 \mathrm{H}, \mathrm{d}$, $J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$) and $0.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 168(12 \%$, M^{+}) and $125\left(100, \mathrm{M}-\mathrm{Pr}^{1}\right)$ (Found: $\mathrm{M}^{+}, 168.1516 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ requires $M, 168.1514$).
(E)-2-(2-Methylpropylidene)-4,4-dimethylcyclopentanol $(97 \%) . R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.26 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3200(\mathrm{OH})$ and 1640 $(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.3(1 \mathrm{H}, \mathrm{dq}, J 7$ and $2, \mathrm{HC=}=\mathrm{C}), 4.5(1 \mathrm{H}, \mathrm{t}, J$ $J 7, \mathrm{CHOH}), 2.5-2.3\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.2(1 \mathrm{H}, \mathrm{d}, J 14$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.1\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.9(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHOH}\right), 1.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.4(1 \mathrm{H}$, dd, $J 13$ and 7 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHOH}\right), 1.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 1.0(6 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CHMe} \mathrm{I}_{2}\right)$ and $0.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 168\left(11 \%, \mathrm{M}^{+}\right)$and $125\left(100, \mathrm{M}-\right.$ Pri$\left.^{\mathbf{i}}\right)$ (Found: $\mathrm{M}^{+}, 168.1516 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ requires $M, 168.1514)$.
(E)-2-Ethylidene-6,6-dimethylcyclohexanol (90\%). $R_{r^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.26 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1660(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.37(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{HC=C}), 3.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 2.29$ $\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.6, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}\right), 2.05(1 \mathrm{H}, \mathrm{dt}, J 13$ and 6 , $\mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}$), 1.64-1.19 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ and OH), 1.62 ($3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH}=\mathrm{C}$), $0.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and $0.86(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 154\left(33 \%, \mathrm{M}^{+}\right)$and 83 (100) (Found: M^{+}, $154.1360 . \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ requires $M, 154.1357$).
(E)-2-Ethylidene-4,4-dimethylcyclohexanol (88\%). $R_{\mathrm{f}^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.23 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3350(\mathrm{OH})$ and $1660(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.55(1 \mathrm{H}, \mathrm{qq}, J 7$ and $1, \mathrm{HC}=\mathrm{C}), 3.95(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 2.16\left(1 \mathrm{H}\right.$, br d, $\left.J 14, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.80(1 \mathrm{H}$, br d, $J 14$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.78-1.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and OH$), 1.57(3 \mathrm{H}$, d, $J 7, M e C H=C), 0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.87(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 154\left(28 \%, \mathrm{M}^{+}\right)$and $111(100 \%)$ (Found: M^{+}, 154.1356. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ requires $M, 154.1357$).
(E)-2-Benzylidene-6,6-dimethylcyclohexanol (91\%). $R_{\mathrm{r}^{-}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.18 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3400(\mathrm{OH}), 1650(\mathrm{C}=\mathrm{C}), 1600,1580$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.34-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.46(1 \mathrm{H}, \mathrm{s}$, $\mathrm{HC}=\mathrm{C}), 3.83(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H \mathrm{OH}), 2.59(1 \mathrm{H}, \mathrm{dt}, J 14$ and 6 , $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}$), 2.17 ($1 \mathrm{H}, \mathrm{dt}, J 14$ and 6, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}$), 1.70-1.32 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ and OH), $1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and 0.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$); $m / z 216$ (100%) (Found: $\mathrm{M}^{+}, 216.1511$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{C}$ requires $M, 216.1514$).
(E)-2-Benzylidene-4,4-dimethylcyclohexanol (87\%). $\quad R_{\mathrm{r}}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.21 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3350(\mathrm{OH}), 1640(\mathrm{C}=\mathrm{C})$, 1600,1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.39-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.61$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 4.20(1 \mathrm{H}, \mathrm{dd}, J 6$ and $4, \mathrm{CHOH}), 2.40(1 \mathrm{H}, \mathrm{d}, J$ $12, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}$), $1.97\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right.$), 1.85-1.42 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and OH$), 1.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.87(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 216\left(100 \%, \mathrm{M}^{+}\right)$and $91\left(87, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 216.1493$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ requires $M, 216.1514$).
(E)-6,6-Dimethyl-2-(2-methylpropylidene) cyclohexanol (96\%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.26 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 3450(\mathrm{OH}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $5.12(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{HC}=\mathrm{C}), 3.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOH}), 2.57(1 \mathrm{H}, \mathrm{d}$ sextet, $J 9$ and 7, $\mathrm{Me}_{2} \mathrm{CH}$), $2.30(1 \mathrm{H}, \mathrm{dt}, J 14$ and 7, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}$), $1.98\left(1 \mathrm{H}, \mathrm{dt}, J 14\right.$ and $\left.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2}\right), 1.66-1.15$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and OH), 0.95 , ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), 0.94 $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.85(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 182(6 \%, \mathrm{M}), 139\left(81, \mathrm{M}-\mathrm{Pr}^{\mathrm{i}}\right), 126$ (82) and 95 (100) (Found: $\mathrm{M}^{+}, 182.1679 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}$ requires M, 182.1670).
(E)-4,4-Dimethyl-2-(2-methylpropylidene)cyclohexanol (86%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.24 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 3300(\mathrm{OH}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $5.23(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{HC=C}), 3.98(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.52(1 \mathrm{H}, \mathrm{d}$ septet, $J 9$ and 7, $\mathrm{Me}_{2} \mathrm{CH}$), $2.17\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}\right.$), $1.80\left(1 \mathrm{H}, \mathrm{d}, J 12, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2}\right), 1.84-1.49\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ and OH), $0.93\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$), $0.92(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) $0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 182\left(18 \%, \mathrm{M}^{+}\right), 164\left(23, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ and 139 (100) (Found: $\mathrm{M}^{+}, 182.1664 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}$ requires $M, 182.1670$).
(E)-2,4,6-Trimethylhept-4-en-3-ol $(98 \%) . \quad R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.25$; $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.15$ $(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{HC}=\mathrm{C}), 3.52(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHOH}), 2.52(1 \mathrm{H}, \mathrm{d}$ septet, $J 9$ and $7, \mathrm{Me}_{2} \mathrm{CHC}=\mathrm{C}$), $1.74(1 \mathrm{H}$, septet, $J 8$ and 7 , $\mathrm{Me}_{2} \mathrm{CHCHOH}$), $1.58(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{C}), 1.55(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 0.96$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.92$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.76\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z$ $156\left(34 \%\right.$, M $\left.^{+}\right)$and 141 (100, M - Me) (Found: $\mathbf{M}^{+}, 156.1503$. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ requires $M, 156.1514$).

Preparation of Propargylic Alcohols.--Typically, butyllithium $\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in hexane; $12.5 \mathrm{~cm}^{3}$) was stirred for 10 min with the acetylene (20 mmol) in ether ($30 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$. The aldehyde (20 mmol) was added to the mixture, which was then stirred for 2 h . The usual aqueous workup procedure and distillation gave the alcohols. The following alcohols were prepared by this method.
4-Phenylbut-3-yne-2-ol (73%). B.p. $95-97^{\circ} \mathrm{C} / 3.5 \mathrm{mmHg}$ (lit., $\left.{ }^{38} 89-92{ }^{\circ} \mathrm{C} / 3 \mathrm{mmHg}\right) ; ~ \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $4.59(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHOH}), 2.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $1.53(3 \mathrm{H}, \mathrm{d}, J 7$, Me).

1-Phenylbut-2-yn-1-ol (86%). B.p. $93-94^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}$ (lit., $\left.{ }^{59} 81{ }^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}\right) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.25(1$ $\mathrm{H}, \mathrm{q}, J 2, \mathrm{PhCHOH}), 4.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $1.80(3 \mathrm{H}, \mathrm{d}, J 2, \mathrm{Me})$.
2-Methylhex-4-yn-3-ol (69%). B.p. $65-68^{\circ} \mathrm{C} / 16 \mathrm{mmHg}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3421(\mathrm{OH})$ and $2220(\mathrm{C} \equiv \mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 4.10$ ($1 \mathrm{H}, \mathrm{dq}, J 5.5$ and $2.1, \mathrm{CHOH}), 2.9(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.3-1.5(1 \mathrm{H}$, $\mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}$) $1.82(3 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{MeC} \equiv \mathrm{C}), 0.96(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{CHMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 111(2 \%$, $\mathrm{M}-\mathrm{H}), 97(24, \mathrm{M}-\mathrm{Me})$ and $69\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{H}, 111.0805 . \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ requires $M-\mathrm{H}, 111.0810$).

5-Methylhex-3-yn-2-ol (81\%). B.p. $\quad 64-65^{\circ} \mathrm{C} / 18 \mathrm{mmHg}$; $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3349(\mathrm{OH})$ and $2246(\mathrm{C} \equiv \mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 4.46$ $(1 \mathrm{H}, \mathrm{dq}, J 1.7$ and $6.5, \mathrm{CHOH}), 2.52(1 \mathrm{H}, \mathrm{d}$ septet, $J 1.7$ and 6.8 , $\left.\mathrm{CH} \mathrm{Me}_{2}\right), 2.20(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.37(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHOH})$, and 1.11 ($6 \mathrm{H}, \mathrm{d}, J 6.8, M e_{2} \mathrm{CH}$); $m / z 111(2 \%, \mathrm{M}-\mathrm{H}), 97(100$, $\mathbf{M}-\mathrm{Me}$) and $69\left(92, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right.$) (Found: $\mathrm{M}^{+}-\mathrm{H}, 111.0808$. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$ requires $M-\mathrm{H}, 111.0810$).

Allylic Alcohols by Grignard Addition to Aldehydes.Typically, the Grignard reagent (50 mmol) was stirred with the aldehyde (49 mmol) in ether $\left(70 \mathrm{~cm}^{3}\right.$) for 4 h . The usual aqueous work-up and procedure and distillation gave the allylic alcohols. The following alcohols were prepared by this method.
(E)-1-Phenylbut-2-en-1-ol (75\%). B.p. $85-87^{\circ} \mathrm{C} / 1.2 \mathrm{mmHg}$ (lit., ${ }^{60} 125-126^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$).
(E)-4-Phenylbut-3-en-2-ol ${ }^{61} \quad$ (85%). $\quad v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3350$ $(\mathrm{OH}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.4-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.44(1 \mathrm{H}, \mathrm{d}, J 15$, $\mathrm{CH}=\mathrm{CHPh}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 15$ and $6, \mathrm{CH}=\mathrm{CHPh}), 4.48(1 \mathrm{H}$, quintet, $J 6, \mathrm{CHOH}), 2.19(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $1.33(3 \mathrm{H}, \mathrm{d}, J 6$, Me).
(E)-2-Methylhex-4-en-3-ol (75\%). B.p. $55-56^{\circ} \mathrm{C} / 17 \mathrm{mmHg}$ (lit., ${ }^{62} 55-57^{\circ} \mathrm{C} / 18 \mathrm{mmHg}$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3370(\mathrm{OH})$ and 967 $(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.61(1 \mathrm{H}, \mathrm{dq}, J 15.4$ and $5.4, \mathrm{CH}=\mathrm{CH} \mathrm{Me}), 5.36$ ($1 \mathrm{H}, \mathrm{dd}, J 15.4$ and $6.0, \mathrm{CH}=\mathrm{CHMe}), 3.69(1 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{CHOH})$, $2.23(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.63(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{C}=\mathrm{CMe}), 1.62(1 \mathrm{H}, \mathrm{d}$ septet, $J 6.0$ and $\left.6.5, \mathrm{Me}_{2} \mathrm{CH}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and 0.80 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}_{\mathrm{B}}$); $m / z 114\left(2 \%, \mathrm{M}^{+}\right)$and $71(100, \mathrm{M}-$ $\mathrm{C}_{3} \mathrm{H}_{7}$) (Found: $\mathrm{M}^{+}, 114.1047 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ requires $M, 114.1045$).
(E)-Pent-3-en-2-ol (78\%). B.p. $119-122^{\circ} \mathrm{C}$ (lit., ${ }^{63} 122^{\circ} \mathrm{C}$); $\delta\left(\mathrm{CDCl}_{3}\right) 5.9-5.1(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.16(1 \mathrm{H}$, quintet, $J 6$, $\mathrm{CHOH}), 2.83(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.73(3 \mathrm{H}, \mathrm{d}, J 4, \mathrm{C}=\mathrm{CMe}), 1.3(1 \mathrm{H}$, d, $J 6, M e \mathrm{CHOH})$.
(E)-5-Methylhex-3-en-2-ol.-5-Methylhex-3-yn-2-ol (2.50 g, 22 mmol) in dry THF ($5 \mathrm{~cm}^{3}$) was added dropwise to a stirred suspension of lithium aluminium hydride (LAH) (1.0 g, 26 mmol) and sodium methoxide $(2.0 \mathrm{~g}, 39 \mathrm{mmol})$ in dry THF (30 cm^{3}) at $0^{\circ} \mathrm{C}$ and the resulting mixture heated under reflux. After 3 h the mixture was allowed to cool and then cautiously poured into aqueous ammonium chloride $\left(20 \mathrm{~cm}^{3}\right)$. The resulting slurry was diluted with ether $\left(20 \mathrm{~cm}^{3}\right)$, filtered through Celite and the Celite pad washed through with ether ($20 \mathrm{~cm}^{3}$). The filtrate was separated and the aqueous phase extracted with ether $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the alcohol $\left(2.04 \mathrm{~g}, 80 \%\right.$), b.p. $60-62^{\circ} \mathrm{C} / 16 \mathrm{mmHg}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $3371(\mathrm{OH})$ and $970(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.62(1 \mathrm{H}$, dd, $J 15$ and $6, \mathrm{CH}=\mathrm{CH}), 5.40(1 \mathrm{H}, \mathrm{dd}, J 15$ and $6, \mathrm{CH}=\mathrm{CH}), 4.22(1 \mathrm{H}$, quintet, $J 6, \mathrm{CHOH}$), $2.25\left(1 \mathrm{H}\right.$, d septet, $J 6$ and $\left.6.5, \mathrm{CH} \mathrm{Me}_{2}\right)$, $1.59(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.23(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeCHOH})$ and $0.97(6 \mathrm{H}, \mathrm{d}$, $\left.J 6.5, \mathrm{Me}_{2} \mathrm{CH}\right) ; m / z 114\left(2 \%, \mathrm{M}^{+}\right), 96\left(42, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 81(100$, $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}$) and 71 (97, M $-\mathrm{C}_{3} \mathrm{H}_{7}$) (Found: M^{+}, 114.1039. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ requires $M, 114.1045$).

General Method for the Acylation of Allylic Alcohols.Typically, the alcohol (10 mmol), acetic anhydride or benzoic anhydride (11 mmol), triethylamine (11 mmol) and DMAP (50 $\mathrm{mg}, 0.4 \mathrm{mmol})$ were stirred in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at room temp. until the reaction was complete (TLC), typically $2-3 \mathrm{~h}$ for the acetates and up to 20 h for the benzoates. Ether ($50 \mathrm{~cm}^{3}$) and hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution; $50 \mathrm{~cm}^{3}$) were added to the mixture and the organic layer was separated, washed with aqueous sodium hyroxide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by distillation or flash chromatography (eluting with hexane- $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), as appropriate. The following propargyl and allyl acetates and benzoates were made by this method.
(E)-But-2-enyl acetate E-1a (86\%). B.p. $128-130{ }^{\circ} \mathrm{C}$ (lit., ${ }^{64}$ $\left.131^{\circ} \mathrm{C}\right) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{C})$, and 960 $(\mathrm{CH}=\mathrm{CH}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.52(2 \mathrm{H}, \mathrm{d}, J$ $\left.6.3, \mathrm{CH}_{2} \mathrm{OAc}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and $1.72(3 \mathrm{H}, \mathrm{d}, J 6.0$, $\mathrm{MeC}=\mathrm{C}$).

But-2-ynyl benzoate $\left(82 \%\right.$ from the alcohol). ${ }^{59} R_{\mathrm{f}}$ (light petroleum- $\left.\mathrm{Et}_{2} \mathrm{O}, 10: 1\right) 0.32$; $\nu_{\max }($ film $) / \mathrm{cm}^{-1} 2261(\mathrm{C} \equiv \mathrm{C})$ and $1719(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.3-8.0(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.8-7.3(3 \mathrm{H}$, m, m - and p-Hs Ph$), 4.93\left(2 \mathrm{H}, \mathrm{q}, J 2.5, \mathrm{CH}_{2} \mathrm{OBz}\right)$ and $1.93(3 \mathrm{H}$, $\mathrm{t}, J 2.5, \mathrm{MeC} \equiv \mathrm{C}) ; m / z 174\left(5 \%, \mathrm{M}^{+}\right), 105(100, \mathrm{PhCO})$ and 77 (19, Ph) (Found: $\mathrm{M}^{+}, 174.0685 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2}$ requires M, 174.0681).
(E)-But-2-enyl benzoate E-1b (68\%). $\quad R_{\mathrm{f}}$ (light petroleum$\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) \quad 0.28 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} 1723 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta\left(\mathrm{CDCl}_{3}\right)$ $8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.2(3 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{Hs} \mathrm{Ph}), 5.95$ $(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $5.3, \mathrm{CH}=\mathrm{CHCHMe}), 5.63(1 \mathrm{H}, \mathrm{dq}, J 15.3$ and $4.8, \mathrm{CH}=\mathrm{CHMe}), 4.75\left(2 \mathrm{H}, \mathrm{dq}, J 5.2\right.$ and $\left.1.1, \mathrm{CH}_{2} \mathrm{OBz}\right)$ and $1.74(3 \mathrm{H}, \mathrm{dt}, J 4.8$ and $1.1, \mathrm{MeC}=\mathrm{C}) ; m / z 176\left(2 \%, \mathrm{M}^{+}\right), 105(100$, $\mathrm{PhCO}), 77(26, \mathrm{Ph})$ and $55\left(21, \mathrm{M}-\mathrm{PhCO}_{2}\right)$ (Found: M^{+}, 176.0850, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M, 176.0837$).

3-Methylbut-2-enyl benzoate $4(83 \%)$. $R_{\mathrm{f}}($ light petroleum$\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) \quad 0.30 ; \quad v_{\max }($ film $) / \mathrm{cm}^{-1} 1725 \quad(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ 8.2-7.9 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}$), 7.7-7.2 (3 H, m, m - and p - Hs Ph), 5.47 (1 H , t septet, $J 7.4$ and $\left.1.4, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right), 4.81(2 \mathrm{H}, \mathrm{d}, J 7.4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OBz}\right)$ and $1.9-1.7\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right) ; m / z 190\left(1 \%, \mathrm{M}^{+}\right)$, $105(62, \mathrm{PhCO}), 77(41, \mathrm{Ph})$ and $68\left(100, \mathrm{M}-\mathrm{PhCO}_{2} \mathrm{H}\right)$ (Found: $\mathrm{M}^{+}, 190.1010 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 190.0994$).
(E)-Pent-3-en-2-yl acetate E-7 (81\%). B.p. $63-64{ }^{\circ} \mathrm{C} / 50$ mmHg (lit., ${ }^{65} 50{ }^{\circ} \mathrm{C} / 23 \mathrm{mmHg}$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1728(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.9-4.9(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHOAc}), 2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeCO}), 1.68(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{MeC}=\mathrm{C})$ and $1.28(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{MeCHOAc})$.

Pent-3-yn-2-yl acetate (77%). B.p. $80-82^{\circ} \mathrm{C} / 46 \mathrm{mmHg}$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2264(\mathrm{C} \equiv \mathrm{C})$ and $1737(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.39$ ($1 \mathrm{H}, \mathrm{qq}, J 6.9$ and $1.9, \mathrm{CHOAc}$), $2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.85(3 \mathrm{H}$, $\mathrm{d}, J 1.9, \mathrm{MeC} \equiv \mathrm{C}$) and 1.46 (3 H, d, $J 6.9, \mathrm{MeCHOAc}) ; m / z 126$ $\left(5 \%, \mathrm{M}^{+}\right), 111(31, \mathrm{M}-\mathrm{Me}), 84\left(46, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right)$ and 66 $\left(100, \mathrm{C}_{5} \mathrm{H}_{6}\right)$ (Found: $\mathrm{M}^{+}, 126.0679 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2}$ requires, M, 126.0681).

4-Methylpent-3-en-2-yl benzoate 9b (59%). R_{f} (light petrol-eum-Et ${ }_{2} \mathrm{O}, \quad 20: 1$) $0.38 ; \quad v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 1712 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta$ $\left(\mathrm{CDCl}_{3}\right) 8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.2(3 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{Hs}$ $\mathrm{Ph}), 5.84(1 \mathrm{H}, \mathrm{dq}, J 8.9$ and $6.3, \mathrm{C} H \mathrm{OBz}), 5.28(1 \mathrm{H}$, d septet, J 8.9 and $\left.1.4, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right), 1.77\left(3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.74$ ($3 \mathrm{H}, \mathrm{d}, J 1.4, \mathrm{Me}_{\mathrm{A}} M e_{\mathrm{B}} \mathrm{C}=\mathrm{C}$) and $1.39(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeCHOBz}$); $m / z 204\left(2 \%, \mathrm{M}^{+}\right), 105(97, \mathrm{PhCO}), 67\left(100, \mathrm{M}-\mathrm{PhCO}_{2} \mathrm{H}-\right.$ Me) and 55 (99, $\mathrm{M}-\mathrm{PhCO}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}$) (Found: M^{+}, 204.1147. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 204.1150$).
(E)-3-Methylpent-3-en-2-yl acetate 11a. Methylmagnesium chloride ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; $20.7 \mathrm{~cm}^{3}$) was added to tiglic aldehyde ($4 \mathrm{~cm}^{3}, 42 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred for 2 h ; an aqueous work-up and acetylation gave the acetate $(4.1 \mathrm{~g}, 70 \%)]$, b.p. $158-160^{\circ} \mathrm{C}$; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ $1735(\mathrm{CO})$ and $1670(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.50(1 \mathrm{H}, \mathrm{dq}, J 1.8$ and 6, $\mathrm{MeCH}=$), $5.25(1 \mathrm{H}, \mathrm{dq}, J 6.6, \mathrm{CHOAc}), 2.02(3 \mathrm{H}, \mathrm{s}$, COMe), $1.60(3 \mathrm{H}, \mathrm{d}, J 1.8, \mathrm{CH}=\mathrm{CMe}$), $1.58(3 \mathrm{H}, \mathrm{d}, J 6$, $\mathrm{C}=\mathrm{CHMe}$) and 1.26 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCHOAc}$); $m / z 142(10 \%$, $\left.\mathrm{M}^{+}\right), 100\left(85, \mathrm{M}-\mathrm{COCH}_{2}\right), 85\left(60, \mathrm{M}-\mathrm{COCH}_{2}-\mathrm{Me}\right), 82$ (40, $\mathrm{M}-\mathrm{COCH}_{2}-\mathrm{H}_{2} \mathrm{O}$) and $67\left(100, \mathrm{C}_{5} \mathrm{H}_{7}\right)$ (Found: M^{+}, 142.0997. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 142.0994$).
(E)-2,4,6-Trimethylhept-4-en-3-yl acetate 11b (92\%). $R_{f}-$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.51 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.21(1 \mathrm{H}, \mathrm{d}, J 9, \mathrm{HC}=\mathrm{C}), 4.76(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHOAc})$, $2.49\left(1 \mathrm{H}\right.$, d septet, $J 9$ and $7, \mathrm{Me}_{2} \mathrm{CHC}=\mathrm{C}$), $2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeC}=\mathrm{O}), 1.88\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 8$ and $\left.7, \mathrm{Me}_{2} \mathrm{CHCHOAc}\right), 1.56$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{C}$), $0.93\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.90(3 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.88\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.78(3 \mathrm{H}, \mathrm{d}, J$ 7, $\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 198\left(6 \%, \mathrm{M}^{+}\right), 156\left(28, \mathrm{M}-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$
and 113 (100) (Found: $\mathrm{M}^{+}, 198.1623 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$ requires M, 198.1620).

Cyclopent-2-enyl acetate 13a (75\%). B.p. $62-63^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$ (lit., $\left.{ }^{66} 48{ }^{\circ} \mathrm{C} / 11 \mathrm{mmHg}\right) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.08(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}=$ $\mathrm{CH}), 5.79(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}=\mathrm{CH}), 5.67(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}), 2.55-$ $1.74\left[4 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right]$ and $2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$.

Cyclohex-2-enyl acetate ${ }^{67} 13 \mathrm{~b}(88 \%) . \quad R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.65$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.92(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHCH}=\mathrm{CH}), 5.70(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OCHCH}=\mathrm{CH}), 5.30(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}), 2.10(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$ and $1.90-1.40\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right]$.

2-Methylcyclohex-2-enyl acetate $13 \mathrm{c}(62 \%)$. B.p. $40-42^{\circ} \mathrm{C} / 1.5$ mmHg (lit., $\left.{ }^{68} 100^{\circ} \mathrm{C} / 30 \mathrm{mmHg}\right) ; ~ \delta\left(\mathrm{CDCl}_{3}\right) 5.60(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{C}$), $5.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 1.80-0.80$ [$6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}$] and $1.60(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{C})$.
(E)-2-Ethylidene-5,5-dimethylcyclopentyl acetate 15a (91\%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.47 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$ and $1660(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.54(1 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}), 5.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc}), 2.26$ 2.21 ($2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}$), 1.67-1.47 ($5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$ and $\left.\mathrm{MeC}=\mathrm{C}\right), 0.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and 0.90 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 182\left(31 \%, \mathrm{M}^{+}\right)$and $140(100, \mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) (Found: M^{+}, 182.1298. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ requires M, 182.1307).
(E)-2-Benzylidene-5,5-dimethylcyclopentyl acetate 15b (95\%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.41 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1730(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C})$, 1600,1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.57-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.44(1 \mathrm{H}, \mathrm{t}, J 3, \mathrm{HC}=\mathrm{C}), 5.34(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc}), 2.90(2 \mathrm{H}, \mathrm{td}, J 7$ and $3, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 1.85(2 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{CC}=\mathrm{C}$), $0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} \mathrm{A}_{\mathrm{B}}\right.$) and $0.95(3 \mathrm{H}$, s, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$); $m / z 244\left(15 \%, \mathrm{M}^{+}\right), 202\left(35, \mathrm{M}-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and $91\left(100, \mathrm{PhCH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 244.1468 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}$ requires M, 244.1463).
(E)-5,5-Dimethyl-2-(2-methylpropylidene)cyclopentyl acetate $15 \mathrm{c}(90 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.51 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$ and $1640 ; \delta\left(\mathrm{CDCl}_{3}\right) 5.3(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{HC}=\mathrm{C}), 5.1(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc})$, 2.7-2.2 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}$ and $\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $2.1(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O})$, 1.8-1.5 (2 H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{C}\right), 1.1\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right), 1.0(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 210(34 \%$, \mathbf{M}^{+}) and $168\left(100, \mathbf{M}-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$) (Found: $\mathrm{M}^{+}, 210.1628$. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 210.1620$).
(E)-2-Ethylidene-6,6-dimethylcyclohexyl acetate 15d (85\%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \quad 0.50 ; \quad \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} \quad 1740 \quad(\mathrm{C}=\mathrm{O}) ; \quad \delta\left(\mathrm{CDCl}_{3}\right)$ $5.33(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{HC}=\mathrm{C}), 4.87(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc}), 2.21-2.03(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}$), $2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 1.70-1.24(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.60(3 \mathrm{H}, \mathrm{d}, J 7, M e \mathrm{CH}=\mathrm{C}), 0.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me} e_{\mathrm{B}}\right) ; m / z 181(16 \%, \mathrm{M}-$ Me) and 121 (100) (Found: $\mathrm{M}^{+}-\mathrm{Me}$, 181.1213. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires M - Me, 181.1228).
(E)-2-Benzylidene-6,6-dimethylcyclohexyl acetate 15 e (94\%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.43 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{C})$, 1600,1580 and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.35-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.37(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{C}), 5.09(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc}), 2.47(1 \mathrm{H}, \mathrm{dt}, J 13$ and 6, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.31\left(1 \mathrm{H}, \mathrm{dt}, J 13\right.$ and $\left.6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}$), 1.69-1.38 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 0.97 ($3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 258\left(6 \%, \mathrm{M}^{+}\right), 216$ (96, M $-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$) and $198(100, \mathbf{M}-\mathrm{AcOH})$ (Found: \mathbf{M}^{+}, 258.1601. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 258.1620$).
(E)-6,6-Dimethyl-2-(2-methylpropylidene)cyclohexyl acetate $15 \mathrm{f}(91 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.53 ; \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.08(1 \mathrm{H}, \mathrm{dd}, J 9$ and $1, \mathrm{HC}=\mathrm{C}), 4.85$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHOAc}$), $2.52\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 9$ and $7, \mathrm{Me}_{2} \mathrm{CH}$), 2.23$2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}=\mathrm{O}), 1.63-1.24(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 0.93 ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.92(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me} \mathrm{B}_{\mathrm{B}}\right), 0.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.84(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 182\left(28 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$ and 164 (49, $\mathrm{M}-\mathrm{AcOH}$), 139 (100%) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}, 182.1656$. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}, 182.1670$).

4-Phenylbut-3-yn-2-yl acetate $\left(90 \%\right.$). R_{f} (hexane- $\mathrm{Et}_{2} \mathrm{O}, 20: 1$) $0.2 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2247(\mathrm{C} \equiv \mathrm{C})$ and $1742(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right)$
7.6-7.1 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $5.68(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHOAc}), 2.07(3 \mathrm{H}, \mathrm{s}$, MeCO) and $1.56(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHOAc}) ; m / z 188\left(20 \%, \mathrm{M}^{+}\right)$, 173 (18, M - Me), 146 (34, M - $\mathrm{CH}_{2} \mathrm{CO}$) and 128 (100, M $\mathrm{MeCO}_{2} \mathrm{H}$) (Found: $\mathrm{M}^{+}, 188.0839 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ requires M, 188.0837).

4-Phenylbut-3-yn-2-yl benzoate (79\%). $\quad R_{f}$ (hexane- $\mathrm{Et}_{2} \mathrm{O}$, 20:1) 0.36; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2251 \quad(\mathrm{C} \equiv \mathrm{C})$ and $1720(\mathrm{C} \equiv \mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 8.3-8.1(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.2(8 \mathrm{H}, \mathrm{m}, m$ - and p-Hs Ph$), 6.05(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CHOBz})$ and $1.79(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{Me})$; $m / z 250\left(24 \%, \mathrm{M}^{+}\right), 128(94, \mathrm{M}-\mathrm{BzOH}), 105$ ($100, \mathrm{PhCO}$) and $77(44, \mathrm{Ph})$ (Found: $\mathrm{M}^{+}, 250.1000 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M, 250.0994).

5-Methylhex-3-yn-2-yl acetate (78\%). R_{f} (light petroleum$\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) 0.20 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2249(\mathrm{C}=\mathrm{C})$ and $1741(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.43(1 \mathrm{H}, \mathrm{dq}, J 1.8$ and $6.6, \mathrm{CHOAc}), 2.55(1 \mathrm{H}, \mathrm{d}$ septet, $J 1.8$ and $6.8, \mathrm{CH} \mathrm{Me}_{2}$), $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.42(3 \mathrm{H}$, $\mathrm{d}, J 6.6, \mathrm{MeCHOAc})$ and $1.13\left(6 \mathrm{H}, \mathrm{d}, J 6.8, M e_{2} \mathrm{CH}\right) ; \mathrm{m} / \mathrm{z} 139$ $(4 \%, \mathrm{M}-\mathrm{Me}), 97\left(22, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}-\mathrm{Me}\right)$ and 87 (100, $\mathbf{M}-\mathrm{C}_{5} \mathrm{H}_{7}$) (Found: $\mathrm{M}^{+}, 139.0755 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M Me, 139.0759).

5-Methylhex-3-yn-2-yl benzoate $(84 \%) . \quad R_{\mathrm{f}}$ (hexane- $\mathrm{Et}_{2} \mathrm{O}$, $20: 1) 0.3$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2258(\mathrm{C} \equiv \mathrm{C})$ and 1724 ($\mathrm{C}=\mathrm{O}$); $\delta\left(\mathrm{CDCl}_{3}\right) 8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.2(3 \mathrm{H}, \mathrm{m}, m$-and p $\mathrm{Hs} \mathrm{Ph}), 5.70(1 \mathrm{H}, \mathrm{dq}, J 1.8$ and $6.6, \mathrm{CHOBz}), 2.58(1 \mathrm{H}$, d septet, $J 1.8$ and 6.8, $\mathrm{CH} \mathrm{Me}_{2}$), $1.57(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCHOBz})$ and 1.16 ($6 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}_{2} \mathrm{CH}$); $m / z 216\left(13 \%, \mathrm{M}^{+}\right), 105(100, \mathrm{PhCO})$ and $77(41, \mathrm{Ph})$ (Found: $\mathrm{M}^{+}, 216.1158 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires M, 216.1150).
(E)-4-Phenylbut-3-en-2-yl acetate ${ }^{20}$ E-19a (84\%). Acetyl chloride in ether used in place of acetic anhydride.
(E)-5-Methylhex-3-en-2-yl acetate E-19b (83\%). $\quad R_{f}$ (light petroleum- $\mathrm{Et}_{2} \mathrm{O}, 20: 1$) 0.25 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1741(\mathrm{C}=\mathrm{O})$ and $972(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.67(1 \mathrm{H}, \mathrm{dd}, J 15$ and $6, \mathrm{CH}=$ CHCHOAc), $5.6-5.0(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHOAc}), 2.26(1 \mathrm{H}$, octet, J 6.7, $\mathrm{CH} \mathrm{Me}_{2}$), 2.00 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), 1.26 ($3 \mathrm{H}, \mathrm{d}, J$ 6.3, $\mathrm{MeCHOAc})$ and $0.96\left(6 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}_{2} \mathrm{CH}\right) ; m / z 156\left(2 \%, \mathrm{M}^{+}\right)$, 114 (14, M - $\mathrm{CH}_{2} \mathrm{CO}$), 96 (42, $\mathrm{M}-\mathrm{AcOH}$) and 81 (100, $\mathrm{M}-$ $\mathrm{AcOH}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}, 156.1135 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires M, 156.1150).
(E)-1-Phenylbut-2-enyl acetate ${ }^{20}$ E-20a (88%). Acetyl chloride in ether used in place of acetic anhydride.
(Z)-1-Phenylbut-2-enyl acetate Z-20a (81%). Acetyl chloride in ether used in place of acetic anhydride; $R_{f}\left(\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}, 5: 1\right)$ $0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1732(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.7-7.3(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.66(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{PhCH}), 5.78(1 \mathrm{H}, \mathrm{dq}, J 12.5$ and 6 , $\mathrm{CH}=\mathrm{CHMe}), 5.70(1 \mathrm{H}$, dd, $J 12.5$ and $8.5, \mathrm{CH}=\mathrm{CHMe}), 2.12$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$) and $1.86(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{MeC}=\mathrm{C}) ; m / z 190(14 \%$, M^{+}), 148 ($100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}$), 129 (88, M $\mathrm{AcOH}-\mathrm{H}$), 115 (83, M - AcOH - Me), 105 (81, PhCO) and 91 (80, $\mathrm{C}_{7} \mathrm{H}_{7}$) (Found: $\mathrm{M}^{+}, 190.0984 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 190.0994$).
(Z)-2-Methylhex-4-en-3-yl acetate E-20b (78\%). B.p. 67$68{ }^{\circ} \mathrm{C} / 18 \mathrm{mmHg}$ (lit., ${ }^{69} 123-126^{\circ} \mathrm{C} / 108 \mathrm{mmHg}$); R_{f} (light pet-roleum- $\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) 0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1731(\mathrm{C}=\mathrm{O})$ and 969 $(\mathrm{CH}=\mathrm{CH}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.68(1 \mathrm{H}, \mathrm{dq}, J 15$ and $6, \mathrm{CH}=\mathrm{CH} \mathrm{Me})$, 5.33 (1 H , ddq, $J 15,6.5$ and $1, \mathrm{CH}=\mathrm{CHMe}$), $4.93(1 \mathrm{H}, \mathrm{t}, J 6.5$, CHOAc), 1.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), $1.80\left(1 \mathrm{H}\right.$, octet, $J 6.5, \mathrm{CH} \mathrm{Me}_{2}$), $1.65(3 \mathrm{H}, \mathrm{dd}, J 6$ and $1, \mathrm{CH}=\mathrm{CHMe})$ and $0.84(6 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right) ; m / z 114\left(8 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{O}\right), 96(58, \mathrm{M}-\mathrm{AcOH})$ and 81 (100, $\mathrm{M}-\mathrm{AcOH}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{O}, 114.1051$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{CH}_{2} \mathrm{O}, 114.1045$).

2-Methylhex-4-yn-3-yl acetate (81\%). B.p. $84-86{ }^{\circ} \mathrm{C} / 16$ $\mathrm{mmHg} ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2248(\mathrm{C} \equiv \mathrm{C})$ and $1743(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ $5.16\left(1 \mathrm{H}, \mathrm{dq}, J 5.6\right.$ and 2.2, CHOAc), 2.3-1.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}$), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.83(3 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{MeC} \equiv \mathrm{C}), 0.98(3 \mathrm{H}, \mathrm{d}, J$ 6.7, $\mathrm{CHMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.95\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 154$ $\left(9 \%, \mathrm{M}^{+}\right), 139(69, \mathrm{M}-\mathrm{Me}), 112\left(65, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right), 111$ (70, $\left.\mathbf{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 94(68, \mathrm{M}-\mathrm{AcOH})$ and $79(100, \mathrm{M}-\mathrm{AcOH}-$ Me) (Found: $\mathrm{M}^{+}, 154.0993$. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 154.0994$).
(E)-4-Trimethylsilylbut-3-en-2-yl benzoate E-40b (84%). Benzoyl chloride used in place of benzoic anhydride; R_{f} (hexane$\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) \quad 0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 1719 \quad(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ 8.2-7.9 ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}$), $7.7-7.2(3 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{Hs} \mathrm{Ph}), 6.16$ $(1 \mathrm{H}, \mathrm{dd}, J 18.8$ and $3.9, \mathrm{C} H=\mathrm{CHSi}), 5.93(1 \mathrm{H}, \mathrm{d}, J 18.8$, $\mathrm{CH}=\mathrm{CHSi}), 5.59(1 \mathrm{H}, \mathrm{dq}, J 3.9$ and $6.5, \mathrm{CHOBz}), 1.42(3 \mathrm{H}, \mathrm{d}, J$ 6.5, MeCHOBz) and $0.76\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 248\left(1 \%, \mathrm{M}^{+}\right), 143$ ($16, \mathrm{M}-\mathrm{PhCO}$), 105 ($100, \mathrm{PhCO}$) and 73 ($48, \mathrm{SiMe}_{3}$) (Found: $\mathrm{M}^{+}, 248.1241 . \mathrm{C}_{14} \mathrm{H}_{202}$ Si requires $M, 248.1232$).

4-Trimethylsilylbut-3-yn-2-yl benzoate (91\%). Benzoylchloride used in place of benzoic anhydride; $R_{\mathrm{f}}\left(\right.$ hexane- $\mathrm{Et}_{2} \mathrm{O}$, 20:1) 0.31; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2203$ ($\mathrm{C} \equiv \mathrm{C}$) and 1712 ($\mathrm{C}=\mathrm{O}$); $\delta\left(\mathrm{CDCl}_{3}\right) 8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.3(3 \mathrm{H}, \mathrm{m}, m$ - and $p-$ Hs Ph), $5.63(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHOBz}), 1.60(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{MeCHOBz})$ and $0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 246\left(95 \%, \mathrm{M}^{+}\right), 231$ ($21, \mathrm{M}-\mathrm{Me}$), 141 ($100, \mathrm{M}-\mathrm{PhCO}$) and 105 (67, PhCO) (Found: $\mathrm{M}^{+}, 246.1078 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ Si requires $M, 246.1076$).
cis-5-Methylcyclohex-2-enyl benzoate 48 (76%). $R_{\mathrm{f}}($ hexane$\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) 0.4 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1725(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.1-$ $8.0(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.6-7.2(3 \mathrm{H}, \mathrm{m}, m-\mathrm{and} p-\mathrm{Hs} \mathrm{Ph}), 5.88$ (1 H , ddd, $J 10.0,4.7$ and $2.6, \mathrm{CH}=\mathrm{CHCOBz}$), $5.71(1 \mathrm{H}$, ddd, J $10.0,2.7$ and $1.7, \mathrm{CH}=\mathrm{CHCOBz}$), $5.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{OBz}$), $2.3-2.0$ ($2 \mathrm{H}, \mathrm{m}$, equatorial Hs), $1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 1.73(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}=\mathrm{CCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.41\left(1 \mathrm{H}, \mathrm{td}, J 12.0\right.$ and $9.8, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{COBz}$ cis to $\mathrm{Me})$ and $1.02(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}) ; m / z 216\left(5 \%, \mathrm{M}^{+}\right), 160(7$, $\mathbf{M}-\mathrm{C}_{4} \mathrm{H}_{8}$) and 105 ($100, \mathrm{PhCO}$) (Found: $\mathrm{M}^{+}, 216.1138$. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{M}, 216.1150$).
(E)-4-Phenylbut-3-en-2-yl Methanesulfonate.-Methanesulfonyl chloride (0.39 g) was stirred with the alcohol $(0.5 \mathrm{~g})$ and triethylamine (0.4 g) in dry ether $\left(25 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 2 h at room temp. The mixture was filtered and the filtrate evaporated under reduced pressure to give the mesylate (0.59 $\mathrm{g}, 77 \%) ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1397,1192\left(\mathrm{SO}_{2}\right)$ and $966(\mathrm{C}=\mathrm{C})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.45(1 \mathrm{H}, \mathrm{d}, J 16, \mathrm{PhCH})$, $6.05(1 \mathrm{H}, \mathrm{dd}, J 16$ and 6, PhCH=CH), $4.58(1 \mathrm{H}$, quintet, $J 6$, CHOMs), 2.72 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{2}$) and $1.65(3 \mathrm{H}, \mathrm{d}, J 6$, MeCHOMs).

General Method for the Preparation of Allylic N-Phenyl-carbamates.-Typically, phenyl isocyanate ($4.0 \mathrm{~g}, 34 \mathrm{mmol}$) was kept with the alcohol (33 mmol), DMAP ($4.4 \mathrm{~g}, 36 \mathrm{mmol}$) and triethylamine ($4.0 \mathrm{~g}, 40 \mathrm{mmol}$) in dry dichloromethane ($30 \mathrm{~cm}^{3}$) under nitrogen at room temp. for 3 h . The mixture was filtered and evaporated under reduced pressure, and the residue chromatographed (hexane- $\mathrm{Et}_{2} \mathrm{O}, 5: 1$, or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the carbamate. The following allyl carbamates were made by this method.
(E)-2-Ethylidene-4,4-dimethylcyclopentyl N -phenylcarbamate 23a (69%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.52 ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$, $1690(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1600$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.40-$ $7.01(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.70(1 \mathrm{H}, \mathrm{qq}, J 7$ and 2 , $\mathrm{HC=C}), 5.54(1 \mathrm{H}, \mathrm{td}, J 6$ and 2, CHO), 2.19-2.13 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.00\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHO}\right), 1.64(3 \mathrm{H}$, d, $J 7, \mathrm{MeCH}$), $1.62\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CHO}$), 1.12 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$); m/z $259(7 \%$, \mathbf{M}^{+}), $215\left(59, \mathrm{M}-\mathrm{CO}_{2}\right)$ and $123\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ (Found: $\mathrm{M}^{+}, 259.1570 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 259.1572$).
(E)-2-Benzylidene-4,4-dimethylcyclopentyl N-phenylcarbamate 23b (65%). Prisms, m.p. $83-84^{\circ} \mathrm{C}$ (from EtOH- $\mathrm{H}_{2} \mathrm{O}$); $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.50 ; v_{\max }(\mathrm{mull}) / \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1710(\mathrm{C}=\mathrm{O})$, $1670(\mathrm{C}=\mathrm{C}), 1600,1580$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.50-7.04$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.65(1 \mathrm{H}, \mathrm{q}, J 2, \mathrm{HC}=\mathrm{C}), 5.80$ ($1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHO}$), $2.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.10(1 \mathrm{H}, \mathrm{dd}, J 12$ and 7, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHO}$), $1.70\left(1 \mathrm{H}, \mathrm{dd}, J 12\right.$ and $7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHO}$), $1.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $1.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me} e_{\mathrm{B}}\right) ; m / z 277$ $\left(7 \%, \mathrm{M}^{+}-\mathrm{CO}_{2}\right), 185\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ and 91 (74, PhCH_{2}) (Found: $\mathbf{M}^{+}-\mathrm{CO}_{2}, 277.1850 . \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires
$M-\mathrm{CO}_{2}, 277.1831$) (Found: $\mathrm{C}, 78.7 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.2$. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{C}, 78.5 ; \mathrm{H}, 7.2 ; \mathrm{N}, 4.4 \%$).
(E)-4,4-Dimethyl-2-(2-methylpropylidene)cyclopentyl N phenylcarbamate 23c $\left(87 \%\right.$). As prisms, m.p. $73-75^{\circ} \mathrm{C}$ (from $\left.\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}\right) ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.60 ; v_{\text {max }}($ mull $) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$, $1690(\mathrm{C}=\mathrm{O}), 1600$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.40-7.03(5 \mathrm{H}, \mathrm{m}$, Ph), $6.63(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.54(1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CHO}), 5.43(1 \mathrm{H}, \mathrm{d}, J 9$, $\mathrm{HC}=\mathrm{C}), 2.35\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 9$ and $\left.7, \mathrm{Me}_{2} \mathrm{CHC}=\mathrm{C}\right), 2.20(1 \mathrm{H}, \mathrm{d}$, $\left.J 15, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.14\left(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.99(1 \mathrm{H}$, dd, $J 13$ and 7, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHO}$), 1.58 (1 H , dd, $J 13$ and 7, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CHO}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$ and $0.96\left(6 \mathrm{H}, \mathrm{d}, J 7, M e_{2} \mathrm{CH}\right) ; m / z 287\left(5 \% \mathrm{M}^{+}\right)$and $151(100$, $\mathrm{M}-\mathrm{PhNHCO}_{2}$) (Found: M^{+}, 287.1884. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M, 287.1885$) (Found: C, 75.2; H, 8.9; N, 5.0. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires C, $75.2 ; \mathrm{H}, 8.8 ; \mathrm{N}, 4.9 \%$).
(E)-2-Ethylidene-4,4-dimethylcyclohexyl N -phenylcarbamate 23d (85%). $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.45 ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300(\mathrm{NH})$, $1680(\mathrm{C}=\mathrm{O}), 1630(\mathrm{C}=\mathrm{C}), 1600$ and $1500(\mathrm{Ph}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.50$ $7.02(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.62(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{HC}=\mathrm{C}), 5.16$ ($1 \mathrm{H}, \mathrm{dd}, J 5$ and $4, \mathrm{CHO}$), $2.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right.$), 1.94 $1.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.59(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{MeCH}=\mathrm{C}), 0.97(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 273\left(6 \%, \mathrm{M}^{+}\right), 229$ ($18, \mathrm{M}-\mathrm{CO}_{2}$) and 137 ($100, \mathrm{M}-\mathrm{PhNHCO} \mathbf{2}^{2}$) (Found: M^{+}, 273.1719. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $M, 273.1729$).
(E)-2-Benzylidene-4,4-dimethylcyclohexyl N -phenylcarbamate 23e $(72 \%) . R_{f}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.63 ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300$ (NH), $1680(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1600,1580$ and $1500(\mathrm{Ph})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.42-7.02(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.70-6.63(2 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{C}$ and NH$), 5.31(1 \mathrm{H}, \mathrm{t}, J 5, \mathrm{CHO}), 2.30(1 \mathrm{H}, \mathrm{d}, J 14$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.17\left(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 2.01-1.33(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.89(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 291$ ($7 \%, \mathrm{M}-\mathrm{CO}_{2}$) and $200(100, \mathrm{M}-$ PhNHCO_{2}) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2}$, 291.1994. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $M-\mathrm{CO}_{2}, 291.1987$).
(E)-2-(2-Methylpropylidene)-4,4-dimethylcyclohexyl N -phenylcarbamate $23 \mathrm{f}(88 \%) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.48 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3300$ (NH), $1680(\mathrm{C}=\mathrm{O}), 1620(\mathrm{C}=\mathrm{C}), 1600$ and $1500(\mathrm{Ph})$; δ $\left(\mathrm{CDCl}_{3}\right) 7.48-6.95(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.33(1 \mathrm{H}, \mathrm{d}, J$ $8, \mathrm{HC}=\mathrm{C}), 5.12(1 \mathrm{H}, \mathrm{t}, J 4, \mathrm{CHO}), 2.55(1 \mathrm{H}, \mathrm{d}$ septet, $J 8$ and 6 , $\mathrm{Me}_{2} \mathrm{CH}$), $2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 1.93-1.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $0.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.94\left(6 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CHMe} e_{2}\right)$ and 0.89 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right) ; m / z 257\left(4 \%, \mathrm{M}-\mathrm{CO}_{2}\right)$ and $165(100$, $\mathrm{M}-\mathrm{PhNHCO}_{2}$) (Found: $\mathrm{M}^{+}-\mathrm{CO}_{2}, 257.2157 . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}$ requires $\mathrm{M}-\mathrm{CO}_{2}, 257.2143$).
(E)-2-Ethylidenecyclohexyl N -phenylcarbamate 25 (89\%). R_{f} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.52 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1695(\mathrm{CO})$ and $1603(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.25(4 \mathrm{H}, \mathrm{m}, o-$ and $m-\mathrm{Ph}), 7.07-$ $7.00(1 \mathrm{H}, \mathrm{m}, p-\mathrm{Ph}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.50(1 \mathrm{H}, \mathrm{qd} . J 6.8$ and $0.9, \mathrm{C}=\mathrm{CH}), 5.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 2.30-2.20(2 \mathrm{H}, \mathrm{m}$, ring Hs), $1.85-1.40(6 \mathrm{H}, \mathrm{m}$, ring Hs) and $1.161(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CHMe})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 153.0,138.0,136.8,128.8,122.9,118.6,76.7,33.0$, 26.5, 25.2, 22.3 and $12.3 ; m / z 245\left(1 \%, \mathrm{M}^{+}\right), 201\left(6, \mathrm{M}-\mathrm{CO}_{2}\right)$, 186 (7, M - $\mathrm{CO}_{2}-\mathrm{Me}$), 109 ($100, \mathrm{M}-\mathrm{PhNHCO}_{2}$) and 93 $\left(\mathrm{PhNH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 245.1425 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires M, 245.1415).

1-(Cyclohexenyl)ethyl N -phenylcarbamate 27. 1-Acetylcyclohexene was reduced in the usual way and the crude alcohol converted directly to the carbamate $(98 \%) ; R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.50$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1700(\mathrm{CO})$ and $1605(\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40-7.00(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.74$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}), 5.24(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{CHO}), 2.05-2.01(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{C}=\mathrm{CHCH}_{2}\right), 1.67-1.52\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $1.35(3 \mathrm{H}, \mathrm{d}$, J 6.5, CHMe$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 153.1,138.1,137.0,128.8,123.6$, $123.0,118.5,75.0,24.7,24.0,22.3,22.2$ and $18.9 ; m / z 245(1.6 \%$, M^{+}), $201\left(6, \mathrm{M}-\mathrm{CO}_{2}\right.$), 186 ($5, \mathrm{M}-\mathrm{CO}_{2}-\mathrm{Me}$), 109 (100, $\mathbf{M}-\mathrm{PhNHCO}_{2}$) and $93\left(50, \mathrm{PhNH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 245.1406$. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 245.1415$).

4-Phenylbut-3-yn-2-yl N-phenylcarbamate (82%). Needles,
m.p. $64-65^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.4 ; v_{\text {max }}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH}), 2254(\mathrm{C} \equiv \mathrm{C})$ and $\left.1731 \mathrm{C}=\mathrm{O}\right)$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.6-6.9(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.75$ ($1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CHO}$) and $1.64(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{Me}) ; m / z 265(3 \%$, \mathbf{M}^{+}), $129\left(100, \mathbf{M}-\mathrm{PhNHCO}_{2}\right)$ and $93\left(16, \mathrm{PhNH}_{2}\right)$ (Found: C, 77.3; $\mathrm{H}, 5.65 ; \mathrm{N}, 5.3 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.0 ; \mathrm{H}, 5.65$; N, 5.3%).
(E)-4-Phenylbut-3-en-2-yl N-phenylcarbamate E-29a (83\%). Needles, m.p. $86-87^{\circ} \mathrm{C}$ (from hexane-EtOAc); R_{f} (hexane$\left.\mathrm{Et}_{2} \mathrm{O}, 10: 1\right) 0.22 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3409(\mathrm{NH})$ and 1727 $(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.68(1 \mathrm{H}, \mathrm{d}, J$ 15.9, $\mathrm{PhCH}=\mathrm{CH}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.21(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and 6.4 , $\mathrm{PhCH}=\mathrm{CH}), 5.54(1 \mathrm{H}$, quintet, $J 6.4, \mathrm{CHO})$ and $1.48(3 \mathrm{H}, \mathrm{d}, J$ 6.4, Me); $m / z 267\left(1 \%, \mathrm{M}^{+}\right), 131\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ and 91 (41, $\mathrm{C}_{7} \mathrm{H}_{7}$) (Found: C, 76.2; H, 6.30; N, 5.2. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 6.35 ; \mathrm{N}, 5.2 \%$).
(E)-5-Methylhex-3-en-2-yl N-phenylcarbamate E-29b (85\%). $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.3 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3324(\mathrm{NH}), 1693$ $(\mathrm{C}=\mathrm{O})$ and $972(\mathrm{C}=\mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.60$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $5.76(1 \mathrm{H}, \mathrm{dd}, J 15$ and $6, \mathrm{CH}=\mathrm{CHCHO}), 5.7-5.1$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHO}$), $2.30\left(1 \mathrm{H}\right.$, octet, $J 6.7, \mathrm{CH} \mathrm{Me}_{2}$), 1.35 ($3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeCO}$) and $1.00\left(6 \mathrm{H}, \mathrm{d}, J 6.7, M e_{2} \mathrm{CH}\right) ; m / z 233$ (11, M^{+}), $97\left(41, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ and $55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}\right)$ (Found: \mathbf{M}^{+}, 233.1428. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 233.1416$).
(E)-Pent-3-en-2-yl N -phenylcarbamate $\mathrm{E}-29 \mathrm{c}(78 \%$). Needles, m.p. 34-36 ${ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3412$ (NH) and $1727(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.56(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 6.0-5.1(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHO}), 1.71(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{MeC}=\mathrm{C})$ and $1.35(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeCHO}) ; m / z 205\left(6 \%, \mathrm{M}^{+}\right), 93(39$, PhNH_{2}) and $69\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ (Found: $\mathrm{C}, 70.3$; H , $7.35 ; \mathrm{N}, 6.8 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 7.30 ; \mathrm{N}, 6.8 \%$).
(E)-2-Methylhex-4-en-3-yl N -phenylcarbamate $\mathrm{E}-30 \mathrm{~b}$ (78\%). As an amorphous solid, m.p. $64-65^{\circ} \mathrm{C}$ (from hexane); $\boldsymbol{v}_{\max }{ }^{-}$ (Nujol)/ $\mathrm{cm}^{-1} 3325(\mathrm{NH})$ and $1692(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.79(1 \mathrm{H}, \mathrm{dq}, J 15$ and 6, $\mathrm{CH}=\mathrm{CH} \mathrm{Me}$), 5.41 ($1 \mathrm{H}, \mathrm{ddq}, J 15,7$ and $1, \mathrm{CH}=\mathrm{CHMe}$), 4.97 ($1 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CHO}$), $1.90(1 \mathrm{H}$, octet, $J 6.5, \mathrm{CHMe}), 1.72(3 \mathrm{H}$, dd, $J 6$ and $1, \mathrm{MeC}=\mathrm{C}), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHM} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.92\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 233\left(7 \%, \mathrm{M}^{+}\right), 97(77$, $\mathbf{M}-\mathrm{PhNHCO}_{2}$) and $55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}\right.$) (Found: $\mathrm{M}^{+}, 233.1412$. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 233.1416$).

1-Phenylbut-2-ynyl N-phenylcarbamate (87%). Needles, m.p. $98-99^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.4 ; v_{\max }-$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3407(\mathrm{NH}), 2256(\mathrm{C} \equiv \mathrm{C})$ and $1728(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.7-6.9(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.48$ ($1 \mathrm{H}, \mathrm{q}, J 2.2, \mathrm{PhCH})$ and 1.92 (3 H, d, $J 2.2, \mathrm{Me}$); $m / z 262$ (5%, M^{+}), 221 (26, $\mathrm{M}-\mathrm{CO}_{2}$) and $129\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ (Found: C, 76.9; H, 5.75; N, 5.3. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.0$; H, 5.65; N, 5.3\%).

5-Methylhex-3-yn-2-yl N -phenylcarbamate (90%). An amorphous solid, m.p. $55-56{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.3$; $v_{\text {max }}{ }^{-}$ (Nujol)/ $\mathrm{cm}^{-1} 3326(\mathrm{NH}), 2249(\mathrm{C} \equiv \mathrm{C})$ and $1700(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.65(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.51(1 \mathrm{H}$, $\mathrm{dq}, J 1.8$ and $6.6, \mathrm{CHO}), 2.58(1 \mathrm{H}, \mathrm{d}$ septet, $J 1.8$ and 6.8 , $\mathrm{CH} \mathrm{Me}_{2}$), 1.51 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{MeCHO}$) and $1.16(6 \mathrm{H}, \mathrm{d}, J 6.8$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right) ; m / z 231\left(16 \%, \mathrm{M}^{+}\right), 95$ (31, M $-\mathrm{PhNHCO}_{2}$), 93 (39, PhNH_{2}) and $55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}\right)$ (Found: $\mathrm{M}^{+}, 231.1252$. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 231.1259$).
2-Methylhex-4-yn-3-yl N -phenylcarbamate (74\%). $R_{\mathrm{f}}($ hex-ane- $\mathrm{Et}_{2} \mathrm{O}, 5: 1$) 0.3; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3320(\mathrm{NH}), 2237(\mathrm{C} \equiv \mathrm{C})$ and $1704(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $5.23(1 \mathrm{H}, \mathrm{dq}, J 5.5$ and $2.2, \mathrm{CHO}), 1.98(1 \mathrm{H}$, d septet, $J 5.5$ and 6.7, $\mathrm{CH} \mathrm{Me}_{2}$), 1.86 ($3 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{MeC} \equiv \mathrm{C}$), 1.04 ($3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $1.01\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 231$ $\left(41 \%, \mathrm{M}^{+}\right), 144$ (36, M $-\mathrm{CO}_{2}-\mathrm{C}_{3} \mathrm{H}_{7}$), 95 ($100, \mathrm{M}-$ PhNHCO ${ }_{2}$) and 93 (89, PhNH_{2}) (Found: M^{+}, 231.1264. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 231.1259$).

But-2-ynyl N-phenylcarbamate (85%). Needles, m.p. $64-66^{\circ} \mathrm{C}$
(from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} \quad 3503,3407(\mathrm{NH}), 2257$ $(\mathrm{C} \equiv \mathrm{C})$ and $1739(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.82$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 4.75\left(2 \mathrm{H}, \mathrm{q}, J 2.5, \mathrm{CH}_{2} \mathrm{O}\right)$ and $1.83(3 \mathrm{H}, \mathrm{t}, J 2.5$, $\mathrm{MeC} \equiv \mathrm{C}) ; m / z 189\left(90 \%, \mathrm{M}^{+}\right), 144\left(30, \mathrm{M}-\mathrm{CO}_{2} \mathrm{H}\right), 93(40$, PhNH_{2}) and 53 (100, M - PhNHCO_{2}) (Found: C, 69.8; H, $5.85 ; \mathrm{N}, 7.2 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.8 ; \mathrm{H}, 5.80 ; \mathrm{N}, 7.4 \%$).
(E)-But-2-enyl N -phenylcarbamate $\mathrm{E}-35(88 \%)$. Needles, m.p. $70-72{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{cm}^{-1} 3415$ (NH) and $1727(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $5.91(1 \mathrm{H}, \mathrm{dt}, J 15.2$ and 5.5 . $\mathrm{CH}=\mathrm{CHMe}), 5.56(1 \mathrm{H}, \mathrm{dq}, J 15.2$ and $5.1, \mathrm{CH}=\mathrm{CHMe}, 4.59\left(2 \mathrm{H}, \mathrm{dq}, J 5.5\right.$ and $\left.1.0, \mathrm{CH}_{2} \mathrm{O}\right)$ and $1.73(3 \mathrm{H}, \mathrm{dt}, J 5.1$ and $1.0, \mathrm{MeC}=\mathrm{C}) ; m / z 191\left(14 \%, \mathrm{M}^{+}\right), 132$ (12, $\left.\mathrm{M}-\mathrm{CO}_{2}-\mathrm{Me}\right), 93\left(24, \mathrm{PhNH}_{2}\right)$ and $55(100, \mathrm{M}-$ PhNHCO_{2}) (Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 7.10 ; \mathrm{N}, 7.2 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.1 ; \mathrm{H}, 6.80 ; \mathrm{N}, 7.3 \%$).

3-Methylbut-2-enyl N -phenylcarbamate 36 (79\%). Needles, m.p. $63-65^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3410$ (NH) and $1720(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.63(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}), 5.40\left(1 \mathrm{H}, \mathrm{t}\right.$ septet, $J 5.9$ and $\left.1.4, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right), 4.66(2 \mathrm{H}, \mathrm{d}$, $\left.J 5.9, \mathrm{CH}_{2} \mathrm{O}\right)$ and $1.85-1.65\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{C}\right) ; m / z 205(24 \%$, M^{+}), 93 ($71, \mathrm{PhNH}_{2}$), 69 ($100, \mathrm{M}-\mathrm{PhNHCO}_{2}$) and 41 (83, $\mathrm{C}_{3} \mathrm{H}_{5}$) (Found: $\mathrm{C}, 70.2 ; \mathrm{H}, 7.40 ; \mathrm{N}, 6.9 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C , 70.2; H, 7.30; N, 6.8\%).

4-Methylpent-3-en-2-yl N -phenylcarbamate 38 (86\%). As prisms, m.p. $63-64^{\circ} \mathrm{C}$ (pentane); $\boldsymbol{R}_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.71 ; \boldsymbol{v}_{\text {max }}{ }^{-}$ $\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{NH}), 1715(\mathrm{CO})$ and $1600(\mathrm{Ph}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right) 7.50-7.10(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.60(1 \mathrm{H}, \mathrm{dq}$, $J 8.8$ and 6.3, MeCHO), $5.21(1 \mathrm{H}, \mathrm{d}$ septet, $J 8.8$ and 1.6 , $\left.\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}\right), 1.75\left(3 \mathrm{H}, \mathrm{d}, J 1.6, \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right), 1.73(3 \mathrm{H}, \mathrm{d}, J 1.6$, $\left.\mathrm{Me}_{\mathrm{A}} M e_{\mathrm{B}} \mathrm{C}=\mathrm{C}\right)$ and $1.33(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeCHO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $153.1,138.1,136.5,128.9,124.9,123.1,118.5,69.1,25.6,21.1$ and 18.3; $m / z 219\left(1 \%, \mathrm{M}^{+}\right), 175\left(3, \mathrm{M}-\mathrm{CO}_{2}\right), 160\left(3, \mathrm{M}-\mathrm{CO}_{2}-\right.$ $\mathrm{Me}), 93\left(70, \mathrm{PhNH}_{2}\right)$ and 83 (100, $\mathrm{M}-\mathrm{PhNHCO}_{2}$) (Found: $\mathrm{M}^{+}, 219.1263 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $M, 219.1259$) (Found: C, 71.3; $\mathrm{H}, 8.05 ; \mathrm{N}, 6.4 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 7.80 ; \mathrm{N}$, 6.2%).
(E)-4-Trimethylsilylbut-3-en-2-yl N -phenylcarbamate E-40a (79%). Needles, m.p. $57-58{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3405(\mathrm{NH})$ and $1725(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.13(1 \mathrm{H}, \mathrm{dd}, J 18.7$ and $3.5, \mathrm{CH}=\mathrm{CHSi})$, $5.74(1 \mathrm{H}, \mathrm{d}, J 18.7, \mathrm{CH}=\mathrm{C} H \mathrm{Si}), 5.35(1 \mathrm{H}, \mathrm{dq}, J 3.5$ and 6.5 , CHO), 1.35 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{MeCHO}$) and $0.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$); $m / z 263\left(4 \%, \mathrm{M}^{+}\right), 127\left(60, \mathrm{M}-\mathrm{PhNHCO}_{2}\right), 99(69, \mathrm{CH}=$ $\left.\mathrm{CHSiMe}_{3}\right), 93\left(55, \mathrm{PhNH}_{2}\right)$ and $73\left(100, \mathrm{SiMe}_{3}\right)$ (Found: C, $63.6 ; \mathrm{H}, 8.00 ; \mathrm{N}, 5.1 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Si}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 8.00$; N, 5.3%).

4-Trimethylsilylbut-3-yn-2-yl $\quad \mathrm{N}$-phenylcarbamate $\quad(82 \%)$. Needles, m.p. $88-90^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3407(\mathrm{NH})$ and $1728(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.52(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHO}), 1.53(3 \mathrm{H}, \mathrm{d}, J 6.7$, $\mathrm{MeCHO})$ and 0.18 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$); m/z $261\left(47 \%, \mathrm{M}^{+}\right), 202$ (35, M $-\mathrm{CO}_{2} \mathrm{NH}$), 125 ($95, \mathrm{M}-\mathrm{PhNHCO}_{2}$), 97 (100, $\mathrm{C} \equiv$ CSiMe_{3}) and 93 (63, PhNH_{2}) (Found: C, 64.6; H, 7.35; N, 5.6. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ Si requires $\mathrm{C}, 64.4 ; \mathrm{H}, 7.30 ; \mathrm{N}, 5.4 \%$).
2-Methyl-4-trimethylsilylbut-3-yn-2-yl N -phenylcarbamate (73%). Needles, m.p. $147-148{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 3407(\mathrm{NH})$ and $1728(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-6.9(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 1.69\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{CO}\right)$ and $0.09(9 \mathrm{H}, \mathrm{s}$, SiMe_{3}); $m / z 275\left(13 \%, \mathrm{M}^{+}\right), 139$ (73, M $-\mathrm{PhNHCO}_{2}$), 97 (99, $\mathrm{C} \equiv \mathrm{CSiMe}_{3}$) and 93 (100, PhNH_{2}) (Found: C, 65.2; H, 7.65; N, 5.0. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ Si requires $\mathrm{C}, 65.5 ; \mathrm{H}, 7.65 ; \mathrm{N}, 5.1 \%$).
cis-5-Methylcyclohex-2-enyl N -phenylcarbamate 46 (81%). Needles, m.p. $88-89^{\circ} \mathrm{C}$ (lit., ${ }^{26} 91.5-92.5^{\circ} \mathrm{C}$) (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3410(\mathrm{NH})$ and $1723(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right)$ 7.4-7.0 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.85(1 \mathrm{H}, \mathrm{ddd}, J 9.8,4.9$ and $2.5, \mathrm{CH}=\mathrm{CHCO}), 5.66(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{CH}=\mathrm{CHCO}), 5.38(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHO}), 2.2-2.0(2 \mathrm{H}, \mathrm{m}$, equatorial Hs$), 1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{MeCH})$, $1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$ cis to Me$), 1.29(1 \mathrm{H}, \mathrm{dt}, J 10.1$ and
12.1, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{COR}$ cis to Me) and $0.99(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{Me}) ; m / z$ $231\left(3 \%, \mathrm{M}^{+}\right), 187\left(3, \mathrm{M}-\mathrm{CO}_{2}\right), 95\left(92, \mathrm{M}-\mathrm{PhNHCO}_{2}\right)$ and 93 ($100, \mathrm{PhNH}_{2}$) (Found: C, 72.5; H, 7.35; N, 6.0 . $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 72.7 ; \mathrm{H}, 7.35 ; \mathrm{N}, 6.1 \%$).

Hydrogenation of Propargylic Alcohol Derivatives.-Typically the palladium catalyst (5% on $\mathrm{BaSO}_{4}, 0.1 \mathrm{~g}$) in methanol ($15 \mathrm{~cm}^{3}$) was stirred under hydrogen at 1 atm for 0.5 h . The acetate, benzoate or carbamate (1.0 g) and quinoline (0.3 g) were added and stirring under hydrogen continued for 1.5 h . The catalyst was filtered off and the filtrate evaporated under reduced pressure. The residue was chromatographed (hexane$\mathrm{Et}_{2} \mathrm{O}, 10: 1$) to give the acetate, benzoate or carbamate. The following (Z)-allylic alcohol derivatives were prepared by this method.
(Z)-But-2-enyl benzoate $\mathrm{Z}-1 \mathrm{~b}(81 \%$ as an $86: 14$ mixture of Z and E-isomers. $R_{\mathrm{f}}\left(\mathrm{light}\right.$ petroleum $\left.-\mathrm{Et}_{2} \mathrm{O}, 10: 1\right) 0.38$; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1722(\mathrm{C}=\mathrm{O}) ; ~ \delta\left(\mathrm{CDCl}_{3}\right) 8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph})$, 7.7-7.2 ($3 \mathrm{H}, \mathrm{m}, m$ - and p - Hs Ph), 6.1-5.4 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), 4.89 $\left(2 \mathrm{H}, \mathrm{dq}, J 5.2\right.$ and $\left.0.8, \mathrm{CH}_{2} \mathrm{O}\right)$ and $1.76(3 \mathrm{H}, \mathrm{dt}, J 5.2$ and 0.8 , $\mathrm{MeC}=\mathrm{C}) ; m / z 176\left(1 \%, \mathrm{M}^{+}\right), 105(100, \mathrm{PhCO}), 77(33, \mathrm{Ph})$ and 55 (29, $\mathrm{M}-\mathrm{PhCO}_{2}$) (Found: M^{+}, 176.0824. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M, 176.0837$).
(Z)-Pent-3-en-2-yl acetate Z-7 (58\%). B.p. 62-64 ${ }^{\circ} \mathrm{C} / 44$ $\mathrm{mmHg} ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1731(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.9-5.1(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHCHOAc}$), $2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.70(3 \mathrm{H}, \mathrm{d}, J 5.6$, $\mathrm{MeC}=\mathrm{C}$) and 1.28 ($3 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{MeCHOAc}$); $m / z 128$ (7%, M^{+}), $86\left(75, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right)$ and $67\left(100, \mathrm{C}_{5} \mathrm{H}_{7}\right)$ (Found: M^{+}, 128.0837. $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $M, 128.0837$).
(Z)-4-Phenylbut-3-en-2-yl acetate Z-19a (79\%). $R_{\mathrm{f}}($ hexane$\left.\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1732(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-$ 7.1 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 6.55 ($1 \mathrm{H}, \mathrm{d}, J 12.5, \mathrm{PhCH}=\mathrm{CH}), 5.82(1 \mathrm{H}, \mathrm{dq}$, $J 10.5$ and $6.5, \mathrm{CHOAc}), 5.65(1 \mathrm{H}, \mathrm{dd}, J 12.5$ and 10.5 , $\mathrm{PhCH}=\mathrm{C} H), 2.01$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$) and 1.38 ($3 \mathrm{H}, \mathrm{d}, J 6.5$, MeCHOAc); m/z $190\left(18 \%\right.$, M $\left.^{+}\right), 148\left(87, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}\right), 131$ ($100, \mathrm{M}-\mathrm{AcO}$) and 129 ($70, \mathrm{M}-\mathrm{AcOH}-\mathrm{H}$) (Found: M^{+}, 190.0991. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $M, 190.0994$).
(Z)-4-Phenylbut-3-en-2-yl benzoate (91%). Needles, m.p. 55$57^{\circ} \mathrm{C}$ (from hexane); $R_{\mathrm{f}}\left(\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) 0.42 ; v_{\text {max }}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1710(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.1-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs}$ $\mathrm{Ph}), 7.7-7.2(8 \mathrm{H}, \mathrm{m}, m$ - and p - Hs Ph), $6.60(1 \mathrm{H}, \mathrm{d}, J 11.1$, $\mathrm{PhCH}=\mathrm{CH}), 6.08(1 \mathrm{H}, \mathrm{dq}, J 9.0$ and $6.1, \mathrm{CHO}), 5.79(1 \mathrm{H}, \mathrm{dd}, J$ 11.1 and $9.0, \mathrm{PhCH}=\mathrm{CH}$), and 1.51 ($3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}$); $m / z 252$ $\left(1 \%, \mathrm{M}^{+}\right), 147(31, \mathrm{M}-\mathrm{PhCO})$ and $105(100, \mathrm{PhCO})$ (Found: $\mathrm{C}, 80.9 ; \mathrm{H}, 6.60 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 6.35 \%$).
(Z)-5-Methylhex-3-en-2-yl acetate Z-19b (85\%). $R_{\mathrm{r}}($ light petroleum $\left.-\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) \quad 0.25 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1735$ (C=O); $\delta\left(\mathrm{CDCl}_{3}\right)$ 5.9-5.4 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc}\right)$, $5.5-5.0(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 2.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}_{2}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}), 1.26(3 \mathrm{H}$, d, $J 6.3, M e C H O A c), 0.96\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e_{\mathrm{A}} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$) and 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 114\left(8 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right), 96$ ($35, \mathrm{M}-\mathrm{AcOH}$) and 81 ($100, \mathrm{M}-\mathrm{AcOH}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}, 114.0682 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}, 114.0681$).
(Z)-5-Methylhex-3-en-2-yl benzoate (94%). R_{f} (hexane- $\mathrm{Et}_{2} \mathrm{O}$, 20:1) 0.37; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1718 \quad(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.2-7.9$ ($2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}$), 7.7-7.2 ($3 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{Hs} \mathrm{Ph}$), $5.92(1 \mathrm{H}, \mathrm{d}$ quintet, $J 1.4$ and $6.3, \mathrm{CHOBz}$), $5.6-5.1(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 2.76$ $\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 2.0$ and $6.6, \mathrm{C} H \mathrm{Me}_{2}$), 1.41 ($3 \mathrm{H}, \mathrm{d}, J 6.3$, $\mathrm{MeCHOBz}), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.98(3 \mathrm{H}, \mathrm{d}, J$ 6.6, $\mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}$); $m / z 218\left(3 \%, \mathrm{M}^{+}\right), 175\left(2, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{7}\right), 105$ ($100, \mathrm{PhCO}$) and $77(26, \mathrm{Ph})$ (Found: $\mathrm{M}^{+}, 218.1324 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $M, 218.1306$).
(Z)-2-Methylhex-4-en-3-yl acetate Z-20b (84\%). $\quad R_{f}($ light petroleum- $\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right) \quad 0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1735 \quad(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 5.71(1 \mathrm{H}, \mathrm{dq}, J 10.5$ and $6.7, \mathrm{CH}=\mathrm{C} H \mathrm{Me}), 5.5-5.1$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCHOAc}$), 2.3-1.5 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe})_{2}$), 2.01 (3 H , $\mathrm{s}, \mathrm{MeCO}), 1.70(3 \mathrm{H}, \mathrm{dd}, J 6.7$ and $1.2, \mathrm{CH}=\mathrm{CHMe}), 0.90(3 \mathrm{H}, \mathrm{d}$, $\left.J 6.7, \mathrm{CH} \mathrm{Me}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.87\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z$
$113\left(11 \%, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 96(35, \mathrm{M}-\mathrm{AcOH})$ and 81 ($100, \mathrm{M}-$ $\mathrm{AcOH}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}, 113.0603 . \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$ requires M $\mathrm{C}_{3} \mathrm{H}_{7}, 113.0603$).
(Z)-4-Phenylbut-3-en-2-yl N-phenylcarbamate Z-29a (99\%). Needles, m.p. $57-58{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3411(\mathrm{NH})$ and $1727(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(10 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{Ph}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.56(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{PhCH}=\mathrm{CH}), 5.87$ $(1 \mathrm{H}, \mathrm{dq}, J 8.8$ and $6.2, \mathrm{CHO})$, $5.68(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 8.8 , $\mathrm{PhCH}=\mathrm{CH})$ and 1.44 (3 H, d, J 6.2, Me); m/z 223 (3%, M CO_{2}), 131 ($100, \mathrm{M}-\mathrm{PhNHCO}_{2}$), 93 ($30, \mathrm{PhNH}_{2}$) and 91 (59 , $\mathrm{C}_{7} \mathrm{H}_{7}$) (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 6.60 ; \mathrm{N}, 5.0 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires C , 76.4; H, 6.35; N, 5.2\%).
(Z)-5-Methylhex-3-en-3-yl N-phenylcarbamate Z-29b (98\%). $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.35 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3323$ (NH) and $1700(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, 5.9-5.5 (1 H, m, CHO), 5.5-5.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), $2.83(1 \mathrm{H}, \mathrm{m}$, CH Me ${ }_{2}$), 1.35 ($3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{MeCHO}$), $1.00(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 233$ $\left(4 \%, \mathrm{M}^{+}\right), 97\left(24, \mathrm{M}-\mathrm{PhNHCO}_{2}\right), 93$ (20, PhNH_{2}) and 55 (100, $\mathrm{C}_{4} \mathrm{H}_{7}$) (Found: $\mathbf{M}^{+}, 233.1403 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires M, 233.1416).
(Z)-Pent-3-en-2-yl N -phenylcarbamate Z-29c (85% from pent-3-yn-2-yl N -phenylcarbamate). ${ }^{32}$ Needles, m.p. $45-47{ }^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3420(\mathrm{NH})$ and $1721(\mathrm{C}=\mathrm{O})$; $\delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.9-5.2(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CHCHO}$), $1.74(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{MeC}=\mathrm{C})$ and $1.34(3 \mathrm{H}, \mathrm{d}$, $J 6.1, \mathrm{MeCHO}) ; ~ m / z 205\left(6 \%, \mathrm{M}^{+}\right), 146\left(18, \mathrm{M}-\mathrm{CO}_{2} \mathrm{NH}\right), 93$ (53, PhNH_{2}) and $69\left(100, \mathrm{M}-\mathrm{PhNHCO}_{2}\right.$) (Found: $\mathrm{C}, 69.9$; $\mathrm{H}, 7.4 ; \mathrm{N}, 6.9 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 70.2 ; \mathrm{H}, 7.30 ; \mathrm{N}, 6.8 \%$).
(Z)-1-Phenylbut-2-enyl N -phenylcarbamate Z-30a (90%). R_{f} -(hexane- $\mathrm{Et}_{2} \mathrm{O}, 10: 1$) $0.26 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3311$ (NH) and $1710(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.6-6.9(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.70(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}), 6.63(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{PhCH}), 6.0-5.5(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $1.85(3 \mathrm{H}, \mathrm{d}, J 5.2, \mathrm{Me}) ; m / z 223\left(6 \%, \mathrm{M}-\mathrm{CO}_{2}\right), 131(100$, $\mathrm{M}-\mathrm{PhNHCO}_{2}$), $93\left(30, \mathrm{PhNH}_{2}\right)$ and 91 (49, $\mathrm{C}_{7} \mathrm{H}_{7}$) (Found: $\mathbf{M}^{+}-\mathrm{PhNHCO}_{2}$, 131.0862. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\quad M-$ $\mathrm{PhNHCO}_{2}, 131.0860$).
(Z)-2-Methylhex-4-en-3-yl N-phenylcarbamate Z-30b (76\%). $R_{\mathrm{f}}\left(\right.$ hexane $\left.-\mathrm{Et}_{2} \mathrm{O}, 5: 1\right) 0.30 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3323(\mathrm{NH})$ and $1698(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $5.73(1 \mathrm{H}, \mathrm{dq}, J 10.2$ and $6.7, \mathrm{CH}=\mathrm{C} H \mathrm{Me}), 5.5-5.2(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CHCHO}$), $1.88\left(1 \mathrm{H}, \mathrm{d}\right.$ septet, $J 5.8$ and $\left.6.7, \mathrm{CH} \mathrm{Me}_{2}\right), 1.77$ ($3 \mathrm{H}, \mathrm{dd}, J 6.6$ and $1.1, \mathrm{MeC}=\mathrm{C}$), 0.97 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.93\left(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CHMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 233\left(3 \%, \mathrm{M}^{+}\right), 97(57$, $\left.\mathrm{M}-\mathrm{PhNHCO}_{2}\right), 93\left(51, \mathrm{PhNH}_{2}\right)$ and $55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}\right)$ (Found: $\mathrm{M}^{+}, 233.1423 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $M, 233.1415$).
(Z)-But-2-enyl N-phenylcarbamate Z-35 (60%). Needles, m.p. $34-36{ }^{\circ} \mathrm{C}$ (from pentane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3448(\mathrm{NH})$ and $1728(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $6.0-5.3(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 4.74\left(2 \mathrm{H}, \mathrm{dq}, J 5.6\right.$ and $\left.0.8, \mathrm{CH}_{2} \mathrm{O}\right)$ and $1.73(3 \mathrm{H}, \mathrm{dt}, J 5.2$ and $0.8, \mathrm{MeC}=\mathrm{C}) ; ~ m / z 191\left(11 \%, \mathrm{M}^{+}\right), 93$ (52, PhNH_{2}) and 55 (100, $\mathrm{M}-\mathrm{PhNHCO}_{2}$) (Found: 69.0; H, $6.65 ; \mathrm{N}, 7.4 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C, 69.1; H, $6.80 ; \mathrm{N}, 7.3 \%$).
(Z)-4-Trimethylsilylbut-3-en-2-yl N -phenylcarbamate Z-40a (84%). Plates, m.p. $50-52^{\circ} \mathrm{C}$ (from hexane); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$) $\mathrm{cm}^{-1} 3407(\mathrm{NH})$ and $1725(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.9(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 6.51(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.27(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and $8.2, \mathrm{CH}=\mathrm{CHSi})$, $5.69(1 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{CH}=\mathrm{C} H \mathrm{Si}), 5.49(1 \mathrm{H}, \mathrm{dq}, J 8.2$ and 6.3 , CHO), 1.35 ($3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{MeCHO}$) and $0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right.$); $m / z 263\left(18 \%, \mathrm{M}^{+}\right), 127\left(59, \mathrm{M}-\mathrm{PhNHCO}_{2}\right), 99(100$, $\mathrm{CH}=\mathrm{CHSiMe}_{3}$), 93 ($71, \mathrm{PhNH}_{2}$) and 73 (90, SiMe_{3}) (Found: C, 63.8; 8.05; $\mathrm{N}, 5.3 \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{21}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 8.00 ; \mathrm{N}$, 5.3%).
(Z)-4-Trimethylsilylbut-3-en-2-yl benzoate Z-40b (95\%). R_{f} -(hexane-Et ${ }_{2} \mathrm{O}, 20: 1$) $0.22 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} \quad 1730$ (C=O); δ $\left(\mathrm{CDCl}_{3}\right) 8.2-7.9(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs} \mathrm{Ph}), 7.7-7.2(3 \mathrm{H}, \mathrm{m}, m$ - and p - Hs Ph), $6.37(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and $8.7, \mathrm{C} H=\mathrm{CHSi}), 5.72(1 \mathrm{H}, \mathrm{dq}, J 8.7$ and $6.3, \mathrm{C} H \mathrm{OBz}), 5.71(1 \mathrm{H}, \mathrm{d}, J 14.3, \mathrm{CH}=\mathrm{C} H \mathrm{Si}), 1.42(3 \mathrm{H}, \mathrm{d}, J$
6.3, MeCOBz) and $0.19\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 248\left(1 \%, \mathrm{M}^{+}\right), 143$ (19, M - PhCO), 105 (100, PhCO), 77 (20, Ph) and 73 (72, SiMe_{3}) (Found: $\mathrm{M}^{+}, 248.1220 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}$ requires M, 248.1232).
(Z)-2-Methyl-4-trimethylsilylbut-3-en-2-yl N -phenylcarbamate $43(81 \%)$. Needles, m.p. $36-38^{\circ} \mathrm{C}$ (from pentane); $v_{\max }{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3415(\mathrm{NH})$ and $1725(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-$ $6.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.6, $\mathrm{CH}=\mathrm{CHSi}), 5.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6, \mathrm{CH}=\mathrm{C} H \mathrm{Si}), 1.64(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{2} \mathrm{CO}$) and $0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 277\left(1 \%, \mathrm{M}^{+}\right), 141$ (25, $\left.\mathbf{M}-\mathrm{PhNHCO}_{2}\right), 93\left(51, \mathrm{PhNH}_{2}\right)$ and $73\left(100, \mathrm{SiMe}_{3}\right)$ (Found: C, 65.1; H, 8.5; N, 5.0. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ Si requires C, 65.0; H, 8.30; N, 5.1\%).
cis-(Z)-4-Phenyl-1-(prop-1-enyl)cyclohexyl N -phenylcarbamate 51 (90% from the propargyl carbamate). ${ }^{29}$ A powder, m.p. $\quad 168-170^{\circ} \mathrm{C} ; \quad \boldsymbol{R}_{\mathrm{f}}$ (hexane-Et ${ }_{2} \mathrm{OAc}, \quad 5: 1$) $0.23 ; \quad \boldsymbol{v}_{\max }{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3435(\mathrm{NH})$ and $1728(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-$ $6.9(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 6.54(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.89(1 \mathrm{H}, \mathrm{d}, J 11.7$, $\mathrm{CH}=\mathrm{CHMe}), 5.68(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 11.7$ and $5.6, \mathrm{CH}=\mathrm{CHMe}), 1.83$ ($3 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{CH}=\mathrm{CHMe}$) and 2.9-1.4 ($9 \mathrm{H}, \mathrm{m}$, remainder); m / z $291\left(1 \%, \mathrm{M}^{+}-\mathrm{CO}_{2}\right), 199$ (21, M $-\mathrm{PhNHCO}_{2}$), 104 (42, PhNHC) and 93 (100, PhNH_{2}).

2-Methyl-4-trimethylsilylbut-3-yn-2-ol.-2-Methylbut-3-yn2 -ol ($20.0 \mathrm{~g}, 0.238 \mathrm{~mol}$) in dry ether ($50 \mathrm{~cm}^{3}$) was kept with ethylmagnesium bromide (0.595 mol) in ether ($250 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$ for 20 h . Chlorotrimethylsilane $(67.9 \mathrm{~g}, 0.625$ mol) in dry ether ($50 \mathrm{~cm}^{3}$) was then added to it and the mixture refluxed for 2.5 h . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, sulfuric acid ($1.4 \mathrm{~mol} \mathrm{dm}^{-3} ; 100 \mathrm{~cm}^{3}$) was added to it over 20 min and stirring continued for a further 10 min . The ether layer was then separated and the aqueous phase extracted with ether $(2 \times 50$ cm^{3}). The combined extracts were washed with water (2×100 cm^{3}), aqueous sodium hydrogen carbonate ($50 \mathrm{~cm}^{3}$) and brine ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was distilled to give the alcohol $(25.6 \mathrm{~g}$, 69%) as waxy needles, m.p. $38-39^{\circ} \mathrm{C}$ (lit., ${ }^{70} 42^{\circ} \mathrm{C}$), b.p. 68$69^{\circ} \mathrm{C} / 13 \mathrm{mmHg}$ (lit., ${ }^{70} 71^{\circ} \mathrm{C} / 18 \mathrm{mmHg} ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3568$ (OH) and $2188(\mathrm{C} \equiv \mathrm{C}) ; \delta\left(\mathrm{CDCl}_{3}\right) 2.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.50(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{COH}\right)$ and $0.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 141(53 \%, \mathrm{M}-\mathrm{Me})$, $123\left(12, \mathrm{M}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{O}\right)$ and $99\left(100, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{Me}, 141.0735 . \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{OSi}$ requires $M-\mathrm{Me}, 141.0735$).

4-Trimethylsilylbut-3-yn-2-ol. The same method described for the preparation of 2-methyl-4-trimethylsilylbut-3-yn-2-ol gave the alcohol ${ }^{71}\left(8.04 \mathrm{~g}, 79 \%\right.$), b.p. $72^{\circ} \mathrm{C} / 13 \mathrm{mmHg} ; v_{\max }(\mathrm{film}) /$ $\mathrm{cm}^{-1} 3010(\mathrm{OH}), 2200(\mathrm{C} \equiv \mathrm{C})$ and $1263(\mathrm{SiMe}) ; \delta\left(\mathrm{CDCl}_{3}\right) 4.50$ ($1 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CHOH}$), $1.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.43(3 \mathrm{H}, \mathrm{d}, J 6.6$, $\mathrm{MeCHOH})$ and $0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; m / z 127(10 \%, \mathrm{M}-\mathrm{Me})$, 99 ($100, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}$) and 84 (32, $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$) (Found: $\mathrm{M}^{+}-\mathrm{Me}, 127.0576 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{OSi}$ requires $M-\mathrm{Me}, 127.0579$).
(E)-4-Trimethylsilylbut-3-en-2-ol. The same method described for the preparation of (E)-5-methylhex-3-en-2-ol, except that the reflux time was 1.5 h , gave the alcohol $(2.17 \mathrm{~g}, 75 \%)$, b.p. $70-72^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$ (lit., ${ }^{72} 70^{\circ} \mathrm{C} / 30 \mathrm{mmHg}$); $v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3330(\mathrm{OH})$ and $1261(\mathrm{SiMe}) ; \delta\left(\mathrm{CDCl}_{3}\right) 6.09(1 \mathrm{H}, \mathrm{dd}, J 19.7$ and 4.2, $\mathrm{CH}=\mathrm{CHSi}), 5.74(1 \mathrm{H}, \mathrm{d}, J 19.7, \mathrm{CH}=\mathrm{CHSi}), 4.23(1 \mathrm{H}$, dq, $J 4.2$ and $6.4, \mathrm{CHOH}), 1.91(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.21(3 \mathrm{H}, \mathrm{d}, J 6.4$, $\mathrm{MeCHOH})$ and $0.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$.

Methylcuprate Reactions on the Acetates Z-19a and Z-20a.-Following Goering and Tseng, ${ }^{73}$ methyllithium ($1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\mathrm{Et}_{2} \mathrm{O} ; 5.8 \mathrm{~cm}^{3}$) was added to a stirred suspension of copper(I) iodide $(0.77 \mathrm{~g}, 4.1 \mathrm{mmol})$ in dry ether $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$. This mixture was stirred for 30 min after which the (Z) acetate was added and stirring continued for a further 2 h . The reaction was quenched with aqueous ammonium chloride (15 cm^{3}) and extracted with ether ($2 \times 10 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced
pressure and the residue was purified by preparative TLC (pentane) to give a similar mixture in each case of (E)-3-methyl-1-phenylbut-1-ene, (E)-4-phenylpent-2-ene and (Z)-3-methyl-1-phenylbut-1-ene ($\sim 0.25 \mathrm{~g}, 80 \%$), identified by their known ${ }^{1} \mathrm{H}$ NMR spectra, ${ }^{20}$ to those obtained by Goering from the E isomers.
cis-5-Methylcyclohex-2-enol.-The enone (5.58 g) in dry ether $\left(10 \mathrm{~cm}^{3}\right)$ was stirred with a suspension of lithium aluminium hydride (0.95 g) in dry ether ($40 \mathrm{~cm}^{3}$) under nitrogen at $-78^{\circ} \mathrm{C}$ for 1.5 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and carefully quenched with aqueous ammonium chloride $\left(30 \mathrm{~cm}^{3}\right)$. The resulting slurry was filtered through Celite and the Celite pad washed with ether $\left(10 \mathrm{~cm}^{3}\right)$. The filtrate was separated, and the aqueous layer extracted with ether $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the alcohol $(3.85 \mathrm{~g}, 69 \%$, as a $98: 2$ mixture with the trans-isomer), b.p. $78-80^{\circ} \mathrm{C} / 15 \mathrm{mmHg}$ (lit., ${ }^{74} 95^{\circ} \mathrm{C} / 22$ $\mathrm{mmHg}) ; \delta\left(\mathrm{CDCl}_{3}\right) 5.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCOH}), 5.63(1 \mathrm{H}, \mathrm{dd}$, $J 10.0$ and $2.3, \mathrm{CH}=\mathrm{CHCOH}), 4.35-4.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.10-$ $1.95(2 \mathrm{H}, \mathrm{m}$, equatorial Hs$), 1.75-1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}$ and $\mathrm{C}=\mathrm{CCH} \mathrm{A}_{\mathrm{B}}$ cis to Me$), 1.62(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.12(1 \mathrm{H}, \mathrm{td}, J 11.9$ and $10.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{COH}$ cis to OH$)$ and $0.96(3 \mathrm{H}, \mathrm{d}, J 6.3$, Me).
trans-5-Methylcyclohex-2-enyl Benzoate 45.-Diethyl azodicarboxylate (1.305 g) in dry THF ($15 \mathrm{~cm}^{3}$) was added dropwise over 15 min to a stirred solution of the alcohol $(0.560 \mathrm{~g})$, triphenylphosphine (1.965 g) and benzoic acid $(0.908 \mathrm{~g})$ in dry THF ($30 \mathrm{~cm}^{3}$) under nitrogen at room temp. The mixture was stirred for 4 h , diluted with ether $\left(60 \mathrm{~cm}^{3}\right)$, washed with aqueous sodium hydrogen carbonate $\left(2 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (hexane- $\mathrm{Et}_{2} \mathrm{O}, 20: 1$) to give a 10:1 mixture of the trans benzoate and its cis isomer $(0.820 \mathrm{~g}, 76 \%)$, HPLC $\left(\mathrm{SiO}_{2}\right.$, hex-ane-EtOAc, 99:1) gave the benzoate; $R_{\mathrm{f}}\left(\right.$ hexane- $\left.\mathrm{Et}_{2} \mathrm{O}, 20: 1\right)$ $0.4 ; v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 1709(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 8.1-8.0(2 \mathrm{H}, \mathrm{m}, o-\mathrm{Hs}$ $\mathrm{Ph})$, 7.6-7.2 ($3 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{Hs} \mathrm{Ph}$), $6.04(1 \mathrm{H}$, ddd, $J 9.9,5.0$ and $2.0, \mathrm{CH}=\mathrm{CHCOBz}), 6.0-5.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCOBz}), 5.50$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOBz}), 2.22\left(1 \mathrm{H}, \mathrm{dt}, J 17.9\right.$ and $5.0, \mathrm{C}=\mathrm{CCH} \mathrm{A}_{\mathrm{B}}$ trans to Me), 2.1-1.9 ($2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}$ and $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{COBz}$ cis to $\mathrm{OBz}), 1.66\left(1 \mathrm{H}\right.$, ddd, $J 17.9,10.1$ and $2.0, \mathrm{C}=\mathrm{CCH}_{\mathrm{A}} H_{\mathrm{B}}$ cis to Me), $1.52\left(1 \mathrm{H}\right.$, ddd, $J 14.5,12.5$ and $4.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{COBz}$ trans to $\mathrm{OBz})$ and $1.01(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}) ; m / z 216\left(7 \%, \mathrm{M}^{+}\right), 160(7$, $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}$) and 105 (100, PhCO) (Found: $\mathrm{M}^{+}, 216.1151$. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $M, 216.1150$).
trans-5-Methylcyclohex-2-enyl N -Phenylcarbamate 49.-The benzoate $45(0.75 \mathrm{~g}, 10: 1$ mixture with 48$)$ in dry ether was stirred with a suspension of lithium aluminium hydride (0.07 g) in ether $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ for 4 h and the mixture worked up in the usual way. The resulting mixture of alcohols $(0.71 \mathrm{~g})$ was added to triethylamine $(0.70 \mathrm{~g})$, acetic anhydride $(0.35 \mathrm{~g})$ and DMAP $(0.02 \mathrm{~g})$ in dry dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$, and kept for 3 h in order to esterify the benzyl alcohol. Phenyl isocyanate (0.42 g) was then added to the mixture which was kept for 10 h . The mixture was washed with aqueous sodium hydrogen carbonate $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (hexane- $\mathrm{Et}_{2} \mathrm{O}, 10: 1$) and further purified by $\mathrm{HPLC}\left(\mathrm{SiO}_{2}\right.$, hexane-EtOAc, 20:1) to give the carbamate ($0.185 \mathrm{~g}, 38 \%$) as needles, m.p. $95-96^{\circ} \mathrm{C}$ (from hexane) (lit., ${ }^{26} 99-100^{\circ} \mathrm{C}$); $v_{\max }{ }^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3399(\mathrm{NH})$ and $1723(\mathrm{C}=\mathrm{O}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.4-$ $7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.03(1 \mathrm{H}$, ddd, $J 9.9,5.0$ and 2.2, $\mathrm{CH}=\mathrm{CHCO}$), $5.9-5.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCO}), 5.4-5.2(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHO}), 2.19\left(1 \mathrm{H}, \mathrm{dt}, J 17.8\right.$ and $5.0, \mathrm{C}=\mathrm{CCH}_{\mathrm{B}} \mathrm{H}_{\mathrm{B}}$ trans to Me), 2.0-1.8 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}$ and $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{COR}$ cis to OR $), 1.59(1 \mathrm{H}$, dddd, $J 17.8,10.3,4.2$ and $2.2, \mathrm{C}=\mathrm{CCH}_{\mathrm{A}} H_{\mathrm{B}}$ cis to Me$), 1.47(1 \mathrm{H}$, ddd, $J 14.6,12.7$ and $4.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{COR}$ trans to OR) and 0.99
($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}$); $m / z 231\left(3 \%, \mathrm{M}^{+}\right), 187\left(5, \mathrm{M}-\mathrm{CO}_{2}\right), 95$ ($100, \mathrm{M}-\mathrm{PhNHCO}_{2}$) and 93 (92, PhNH_{2}) (Found: C, 72.9; $\mathrm{H}, 7.40 ; \mathrm{N}, 6.1 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 72.7 ; \mathrm{H}, 7.35 ; \mathrm{N}, 6.1 \%$).

Dimethyl(phenyl)-1-(1-phenylbutyl)silane.-Palladium (10\% on C) in methanol ($5 \mathrm{~cm}^{3}$) was stirred under hydrogen at 1 atm for 30 min . The allylsilane $E-21 \mathrm{a}(0.484 \mathrm{~g}$) in methanol (10 cm^{3}) was added to the mixture which was then stirred under hydrogen at 1 atm for 2 h . The catalyst was filtered off and the filtrate evaporated under reduced pressure. The residue was chromatographed (hexane) to give the silane ($0.361 \mathrm{~g}, 74 \%$); R_{f} (hexane) $0.25 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 1603(\mathrm{Ph}), 1261$ (SiMe) and $1128(\mathrm{SiPh}) ; \delta\left(\mathrm{CDCl}_{3}\right) 7.5-6.8(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 2.62(1 \mathrm{H}$, dd, $J 9.6$ and $5.4, \mathrm{PhCH}), 2.9-0.5(7 \mathrm{H}, \mathrm{m}, \mathrm{Pr}), 0.24(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Si}_{\mathrm{Me}}^{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$) and $0.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}\right) ; m / z 268\left(11 \%, \mathrm{M}^{+}\right)$ and $135\left(100, \mathrm{PhMe}_{2} \mathrm{Si}\right.$) (Found: $\mathrm{M}^{+}, 268$. 1643. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Si}$ requires $M, 268.1647$).
(\pm)-1-Phenylbutanol.-Boron trifluoride $(40 \%$ solution in acetic acid; $0.05 \mathrm{~cm}^{3}$) was stirred with the silane (100 mg) in dry dichloromethane ($2 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ under nitrogen for 1.5 h . Aqueous sodium hydrogen carbonate ($3 \mathrm{~cm}^{3}$) was added cautiously to the mixture and stirring continued for 15 min . The mixture was diluted with ether $\left(15 \mathrm{~cm}^{3}\right)$ after which the aqueous layer was separated and extracted with ether ($5 \mathrm{~cm}^{3}$). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give fluoro(dimethyl)-1-(1-phenylbutyl)silane ($75 \mathrm{mg}, 96 \%$); $\delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 2.4-1.1$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SiCHCH}_{2} \mathrm{CH}_{2}\right), 0.84(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{Me})$ and $0.12(6 \mathrm{H}$, $\mathrm{d}, J 7, \mathrm{SiMe}_{2}$). This fluorosilane (75 mg) was stirred in dry ether ($2 \mathrm{~cm}^{3}$) with triethylamine (40 mg) and m-chloroperbenzoic acid (300 mg) at room temp. for 20 h . The mixture was diluted with ether ($20 \mathrm{~cm}^{3}$) and then washed with aqueous sodium bisulfite ($10 \mathrm{~cm}^{3}$) and aqueous sodium hydrogen carbonate (10 cm^{3}); the combined aqueous washings were then extracted with ether $\left(10 \mathrm{~cm}^{3}\right)$. The combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the alcohol ($41 \mathrm{mg}, 74 \%$), b.p. $120^{\circ} \mathrm{C} / 19 \mathrm{mmHg}$ (lit., ${ }^{63} 113-115^{\circ} \mathrm{C} / 17$ mmHg); $\quad v_{\text {max }}$ (film) $\quad 3340 \quad(\mathrm{OH})$ and $1604 \quad(\mathrm{Ph}) ; ~ \delta-$ $\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.67(1 \mathrm{H}, \mathrm{t}, J 5, \mathrm{PhCH}), 1.89$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$) and $2.0-0.7(7 \mathrm{H}, \mathrm{m}$, remainder); identical with a sample ($4.98 \mathrm{~g}, 78 \%$) prepared from benzaldehyde (4.50 g) and propylmagnesium bromide (50 mmol) in dry ether ($60 \mathrm{~cm}^{3}$) under nitrogen at $0^{\circ} \mathrm{C}$ for 3 h .
(R)-4-Phenylbut-3-yn-2-ol 56.-Alpine-borane ${ }^{\circledR}$ (0.5 mol dm^{-3} in THF, Aldrich; $46 \mathrm{~cm}^{3}$) was stirred under nitrogen at water pump pressure and then under high vacuum until all solvent was removed. The nitrogen atmosphere was then restored and and the mixture cooled to $0^{\circ} \mathrm{C}$, when 4 -phenylbut3 -yn- 2 -one ${ }^{75}(2.4 \mathrm{~g})$ in dry pentane ($5 \mathrm{~cm}^{3}$) was added to it; the mixture was then stirred at $0^{\circ} \mathrm{C}$ for 8 h and then at room temp. for 10 h . The mixture was re-cooled to $0^{\circ} \mathrm{C}$ and, after addition of acetaldehyde ($1 \mathrm{~cm}^{3}$), was stirred for 15 min . The solvent was removed at water pump pressure, and the pinene was removed at high vacuum at $40^{\circ} \mathrm{C}$ for 2 h . The nitrogen atmosphere was restored and dry ether $\left(40 \mathrm{~cm}^{3}\right)$ was added to the solution which was then cooled to $0^{\circ} \mathrm{C}$. After addition of 2-aminoethanol (1.5 cm^{3}) to the solution stirring was continued at $0^{\circ} \mathrm{C}$ for 20 min . The resulting slurry was filtered through Celite and the pad washed with ether $\left(10 \mathrm{~cm}^{3}\right)$. The filtrate was washed with brine ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed (hexane- $\mathrm{Et}_{2} \mathrm{O}$, $5: 1$) to give the (R)-alcohol ($1.97 \mathrm{~g}, 81 \%$); $R_{\mathrm{f}}\left(\right.$ hexane- $\mathrm{Et}_{2} \mathrm{O}, 5: 1$)

[^0]$0.2[\alpha]_{\mathrm{D}}^{20}+25.4^{*}\left(c 0.30, \mathrm{CHCl}_{3}\right)$, identical (${ }^{1} \mathrm{H}$ NMR, IR $)$ with the racemic alcohol. The following homochiral derivatives were prepared from this compound by the same methods as described for the preparation of the corresponding racemic compounds.
(R)-4-Phenylbut-3-yn-2-yl benzoate. $[\alpha]_{\mathrm{D}}^{20}+16.6$ (c 0.85, CHCl_{3}).
(R)-4-Phenylbut-3-yn-2-yl N -phenylcarbamate. M.p. 85$86^{\circ} \mathrm{C}$ (from hexane), $[\alpha]_{\mathrm{D}}^{20}+148\left(c 0.24, \mathrm{CHCl}_{3}\right)$.
(Z,R)-4-Phenylbut-3-en-2-yl benzoate 57. $[\alpha]_{\mathrm{D}}^{20}-171$ (c $0.83, \mathrm{CHCl}_{3}$).
(Z,R)-4-Phenylbut-3-en-2-yl N-phenylcarbamate 53. From unrecrystallised propargyl carbamate, $[\alpha]_{\mathrm{D}}^{20}-131$ (cc 0.35 , CHCl_{3}).
(E,S)-1-Dimethyl(phenyl)silyl-1-phenylbut-2-ene 54. $[\alpha]_{\mathrm{D}}^{20}$ $+4.25\left(c 0.55, \mathrm{CHCl}_{3}\right)$.
(R)-Dimethylphenyl-1-(1-phenylbutyl)silane. From the mixture of 58 and $59,[\alpha]_{\mathrm{D}}^{20}+11.6\left(c 0.63, \mathrm{CHCl}_{3}\right)$.
(S)-Dimethylphenyl-1-(1-phenylbutyl)silane. From 54, $[\alpha]_{\mathrm{D}}^{20}$ $-16.1\left(c 0.65, \mathrm{CHCl}_{3}\right)$.
(R)-1-Phenylbutan-1-ol 60 . From the mixture of 58 and 59 , $[\alpha]_{\mathrm{D}}^{2 \mathrm{O}}+22.2\left(c 0.30, \mathrm{CHCl}_{3}\right)$.
(S)-1-Phenylbutan-1-ol 55. From 54, $[\alpha]_{\mathrm{D}}^{20}-33.6$ (c 0.38, CHCl_{3}).
α-Methoxy- α-(trifluoromethyl)phenylacetate Ester Forma-tion.-The alcohol (0.02 mmol), DMAP (0.01 mmol), Mosher's acid $(0.03 \mathrm{mmol})$ and dicyclohexylcarbodiimide $(0.03 \mathrm{mmol})$ were kept in dichloromethane ($0.3 \mathrm{~cm}^{3}$) under nitrogen for 25 h . The mixture was purified directly by preparative $\operatorname{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ hexane, $1: 1$) to give the esters $(80-90 \%)$. The following MTPA esters were prepared in this way and characterised by their ${ }^{1} \mathrm{H}$ NMR spectra.

$\begin{array}{ll}\text { (R)-4-Phenylbut-3-yn-2-yl } & \text { (R)-methoxy (trifluoromethyl)- }\end{array}$ phenylacetate. $\delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.90$ $(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CHO}), 3.61(3 \mathrm{H}, \mathrm{q}, J 0.9, \mathrm{OMe})$ and $1.61(3 \mathrm{H}, \mathrm{d}$, $J 6.7, \mathrm{MeCH}$).
$\begin{array}{ll}\text { (S)-4-Phenylbut-3-yn-2-yl } & \text { (R)-methoxy(trifluoromethyl)- }\end{array}$ phenylacetate. $\delta\left(\mathrm{CDCl}_{3}\right) 7.6-7.2(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.86(1 \mathrm{H}$, $\mathrm{q}, J 6.8, \mathrm{CHO}), 3.58(3 \mathrm{H}, \mathrm{q}, J 1.1, \mathrm{OMe})$ and $1.66(3 \mathrm{H}, \mathrm{d}, J 6.8$, MeCH).
(S)-1-Phenylbutyl (S)-methoxy(trifluoromethyl)phenylacetate. $\delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.96(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $5.9, \mathrm{PhCH}), 3.43(3 \mathrm{H}, \mathrm{q}, J 1.1, \mathrm{OMe}), 2.1-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me})$.
(R)-1-Phenylbutyl (S)-methoxy(trifluoromethyl)phenylacetate. $\delta\left(\mathrm{CDCl}_{3}\right) 7.5-7.2(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.88(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 6.1, PhCH$), 3.53(3 \mathrm{H}, \mathrm{q}, J 1.2, \mathrm{OMe}), 2.1-1.1(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$) and $0.92(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me})$.
Note: The enantiomer of Mosher's acid was used for the derivatives of the 'saturated' alcohols from that which was used for the acetylenic alcohols.
The ${ }^{1} \mathrm{H}$ NMR spectra showed that the alcohol 56 had a 78% e.e., the alcohol 60 had a 52% e.e. and the alcohol 55 had a 72% e.e.

Acknowledgements

We thank the SERC for maintenance awards (for D. H., N. J. L. and A. P. T.).

References

1 I. Fleming, J. Dunoguès and R. Smithers, Org. React. (N.Y.), 1989, $37,57$.
2 H. Wetter and P. Scherer, Helv. Chim. Acta, 1983, 66, 118.
3 V. G. Matassa, P. R. Jenkins, A. Kümin, L. Damm, J. Schreiber, D. Felix, E. Zass and A. Eschenmoser, Isr. J. Chem., 1989, 29, 321.

4 T. Hayashi, M. Konishi, H. Ito and M. Kumada, J. Am. Chem. Soc., 1982, 104, 4962; T. Hayashi, M. Konishi and M. Kumada, J. Am. Chem. Soc., 1982, 104, 4963; T. Hayashi, H. Ito and M. Kumada, Tetrahedron Lett., 1982, 23, 4605; T. Hayashi, M. Konishi and M. Kumada, J. Chem. Soc., Chem. Commun., 1983, 736; T. Hayashi, K. Kabeta, T. Yamamoto, K. Tamao and M. Kumada, Tetrahedron Lett., 1983, 24, 5661; T. Hayashi, Y. Okamoto, K. Kabeta, T. Hagihara and M. Kumada, J. Org. Chem., 1984, 49, 4224; T. Hayashi, M. Konishi, Y. Okamoto, K. Kabeta and M. Kumada, J. Org. Chem., 1986, 51, 3772; T. Hayashi, Y. Matsumoto and Y. Ito, Organometallics, 1987, 6, 884.

5 G. Wickham and W. Kitching, Organometallics, 1983, 2, 541; G. Wickham, D. Young and W. Kitching, Organometallics, 1988, 7, 1187; W. Kitching, K. G. Penman, B. Laycock and I. Maynard, Tetrahedron, 1988, 44, 3819.
6 I. Fleming and N. K. Terrett, J. Organomet. Chem., 1984, 264, 99; M. J. C. Buckle, I. Fleming and S. Gil, Tetrahedron Lett., 1992, 33, 4479.
7 Preliminary communication: I. Fleming, A. K. Sarkar and A. P. Thomas, J. Chem. Soc., Chem. Commun., 1987, 157; full paper: I. Fleming, N. J. Lawrence, A. K. Sarkar and A. P. Thomas, J. Chem. Soc., Perkin Trans. 1, 1992, 3303.
8 Preliminary communication: I. Fleming and N. J. Lawrence, Tetrahedron Lett., 1988, 29, 2073 and 2077; full paper: I. Fleming and N. J. Lawrence, J. Chem. Soc., Perkin Trans. 1, 1992, 3309.

9 Preliminary communication: I. Fleming and D. Higgins, J. Chem. Soc., Perkin Trans. 1, 1989, 206; full paper: I. Fleming and D. Higgins, J. Chem. Soc., Perkin Trans. 1, 1992, 3327.

10 T. K. Sarkar, Synthesis, 1990, 969 and 1101.
11 Preliminary communication: I. Fleming and A. K. Sarkar, J. Chem. Soc., Chem. Commun., 1986, 1199; full paper: I. Fleming, S. Gil, A. K. Sarkar and T. Schmidlin, J. Chem. Soc., Perkin Trans. 1, 1992, 3351.
12 I. Fleming and A. P. Thomas, J. Chem. Soc., Chem. Commun., 1985, 411 and 1986, 1456.
13 I. Fleming and D. Marchi, Synthesis, 1981, 560.
14 B. Laycock, W. Kitching and G. Wickham, Tetrahedron Lett., 1983, 24, 5785; see also B. M. Trost and D. M. T. Chan, J. Chem. Soc., 1982, 104, 3733.
15 H.-F. Chow and I. Fleming, Tetrahedron Lett., 1985, 26, 397; I. Fleming, P. E. J. Sanderson and N. K. Terrett, Synthesis, 1992, 69.
16 I. Fleming, D. Marchi and S. K. Patel, J. Chem. Soc., Perkin Trans. I, 1981, 2518.
17 B. M. Trost, J. Yoshida and M. Lautens, J. Am. Chem. Soc., 1983, 105, 4494; see also Y. Okuda, M. Sato, K. Oshima and H. Nozaki, Tetrahedron Lett., 1983, 24, 2015; S. Torii, H. Tanaka, T. Katoh and K. Morisaki, Tetrahedron Lett., 1984, 25, 3207; H. Urata, H. Suzuki, Y. Moro-Oka and T. Ikawa, Bull. Chem. Soc. Jpn., 1984, 57, 607.

18 J. G. Smith, S. E. Drozda, S. P. Petraglia, N. R. Quinn, E. M. Rice, B. S. Taylor and M. Viswanathan, J. Org. Chem., 1984, 49, 4112.

19 R. J. Anderson, C. A. Henrick and J. B. Siddall, J. Am. Chem. Soc., 1970, 92, 735; R. M. Magid, Tetrahedron, 1980, 36, 1901.
20 H. L. Goering, E. P. Seitz and C. C. Tseng, J. Org. Chem., 1981, 46, 5304.

21 R. J. Anderson, C. A. Henrick, J. B. Siddall and R. Zurflüh, J. Am. Chem. Soc., 1972, 94, 5379; see also ref. 17.
22 H. L. Goering and S. S. Kantner, J. Org. Chem., 1983, 48, 721; M. Julia, A. Righini and J.-N. Verpeaux, Tetrahedron Lett., 1979, 2393; A. Claesson and L.-I. Olsson, J. Chem. Soc., Chem. Commun., 1978, 621; see also E. J. Corey and N. W. Boaz, Tetrahedron Lett., 1984, 25, 3063.

23 I. Fleming and T. W. Newton, J. Chem. Soc., Perkin Trans. 1, 1984, 1805; A. Barbero, P. Cuadrado, I. Fleming, A. M. González and F. J. Pulido, J. Chem. Res., 1990, (S), 291; A. Barbero, P. Cuadrado, I. Fleming, A. M. González and F. J. Pulido, J. Chem. Soc., Chem. Commun., 1992, 351.
24 A. Miyashita and A. Yamamoto, Bull. Chem. Soc. Jpn., 1977, 50, 1102; A. Miyashita, T. Yamamoto and A. Yamamoto, Bull. Chem. Soc. Jpn., 1977, 50, 1109; M. Suzuki, T. Suzuki, T. Kawagishi and R. Noyori, Tetrahedron Lett., 1980, 21, 1247.
25 C. Gallina and P. G. Ciattini, J. Am. Chem. Soc., 1979, 101, 1035.
26 H. L. Goering, S. S. Kantner and C. C. Tseng, J. Org. Chem., 1983, 48, 715.

27 I. Fleming and D. Waterson, J. Chem. Soc., Perkin Trans. 1, 1984, 1809.

28 Y. Tanigawa, Y. Fuse and S.-I. Murahashi, Tetrahedron Lett., 1982, 23, 557.
29 I. Fleming, K. Takaki and A. P. Thomas, J. Chem. Soc., Perkin Trans. 1, 1987, 2269.
30 J. Levisalles, M. Rudler-Chauvin and H. Rudler, J. Organomet. Chem., 1977, 136, 103.
31 M. M. Midland, A. Tramontano, A. Kazubski, R. S. Graham, D. J. S. Tsai and D. B. Cardin, Tetrahedron, 1984, 40, 1371.
32 H. C. Brown, G. G. Pai and P. K. Jadhav, J. Am. Chem. Soc., 1984, 106, 1531.
33 I. Fleming, R. Henning and H. Plaut, J. Chem. Soc., Chem. Commun., 1984, 29.
34 R. MacLeod, F. J. Welch and H. S. Mosher, J. Am. Chem. Soc., 1960, 82, 876; H. M. Peters, D. M. Feigl and H. S. Mosher, J. Org. Chem., 1968, 33, 4245.
35 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543.
36 H.-F. Chow and I. Fleming, Tetrahedron Lett., 1985, 26, 397.
37 G. Hófle and W. Steglich, Synthesis, 1972, 619; G. Höfle, W. Steglich and H. Vorbrüggen, Angew. Chem., Internat. Ed. Engl., 1978, 17, 569.
38 C. U. Pitman, Jr. and G. A. Olah, J. Am. Chem. Soc., 1965, 87, 5632.
39 A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
40 G. H. Posner and C. M. Lentz, J. Am. Chem. Soc., 1979, 101, 934.
41 I. Paterson, Tetrahedron, 1988, 44, 4207.
42 W. C. Agosta and A. B. Smith III, J. Am. Chem. Soc., 1971, 93, 5513.
43 J. T. A. Reuvers and A. De Groot, Synthesis, 1982, 1105.
44 A. Hassner and T. C. Mead, Tetrahedron, 1964, 20, 2201.
45 H. L. Goering and J. P. Blanchard, J. Am. Chem. Soc., 1951, 73, 5863 and 1954, 76, 5405.
46 O. Mitsunobu, Synthesis, 1981, 1.
47 I. Fleming, T. W. Newton and F. Roessler, J. Chem. Soc., Perkin Trans. 1, 1981, 2527.
48 J. Slutzky and H. Kwart, J. Am. Chem. Soc., 1973, 95, 8678.
49 K. Fugami, K. Oshima, K. Utimoto and H. Nozaki, Tetrahedron Lett., 1986, 27, 2161.
50 I. Fleming, M. Rowley, P. Cuadrado, A. M. González-Nogal and F. J. Pulido, Tetrahedron, 1989, 45, 413.

51 M. S. Wrighton and M. A.Schroeder, J. Am. Chem.Soc., 1974,96,6235.
52 R. A. Benkeser, M. L. Burrows, L. E. Nelson and J. V. Swisher, J. Am. Chem. Soc., 1961, 83, 4385.
53 J. V. Swisher and C. Zullig, Jr., J. Org. Chem., 1973, 38, 3353.
54 G. A. Hiegel and P. Burk, J. Org. Chem., 1973, 38, 3637.
55 M. E. Krafft and R. A. Holton, Tetrahedron Lett., 1983, 24, 1345.
56 Y. Chan and W. W. Epstein, Org. Synth., Coll. Vol. VI, 1988, 496.
57 R. F. Miller and R. Adams, J. Am. Chem. Soc., 1936, 58, 787.
58 J. Colonge and J. Grenet, Bull. Soc. Chim. Fr., 1954, 1304.
59 E. A. Braude and J. A. Coles, J. Chem. Soc., 1951, 2078 and 2085.
60 J. Kenyon, S. M. Partridge and H. Phillips, J. Chem. Soc., 1937, 207.
61 J. Kenyon, S. M. Partridge and H. Phillips, J. Chem. Soc., 1936, 85.
62 R. G. R. Bacon and E. H. Farmer, J. Chem. Soc., 1937, 1065.
63 C. R. Weast, ed., Handbook of Chemistry and Physics, CRC, Florida, 62nd Edition, 1981.
64 S. A. Morell, H. H. Geller and E. C. Lathrop, Ind. Eng. Chem. Fundam., 1945, 37, 877.
65 W.S. Linn, W. L. Waters and M. C. Caserio, J. Am. Chem. Soc., 1970, 92, 4018.
66 K. Alder and F. H. Flock, Chem. Ber., 1956, 89, 1732.
67 K. Jankowski and J.-Y. Daigle, Can. J. Chem., 1971, 49, 2594.
68 M. C. Dart and H. B. Henbest, J. Chem. Soc., 1960, 3563.
69 J. Reif, Ber., 1908, 41, 2739.
70 M. F. Shostakovski, I. E. Shikhiev and N. V. Komarov, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, 1956, 1271 (Chem. Abstr., 1961, 51, 5689i).
71 G. E. Bennett and W. W. Lee, U.S. Patent 2887371 (1959) (Chem. Abstr., 1959, 53, 19883e).
72 J.-P. Picard. A. Ekouya, J. Dunoguès, N. Duffaut and R. Calas, J. Organomet. Chem., 1972, 93, 51.
73 H. L. Goering and C. C. Tseng, J. Org. Chem., 1983, 48, 3986.
74 H. L. Goering and J. P. Blanchard, J. Am. Chem. Soc., 1954, 76, 5405.

75 L. Birkofer, A. Ritter and H. Uhlenbrauck, Chem. Ber., 1963, 96, 3280.

Paper 2/03400J
Received 29th June 1992
Accepted 8th September 1992

[^0]: * $[\alpha]_{\mathrm{D}}$ Values are recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

